<table>
<thead>
<tr>
<th>行</th>
<th>修正内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>July and it…</td>
</tr>
<tr>
<td>20</td>
<td>Region, based on the same assumption as shown in Table 15.</td>
</tr>
<tr>
<td>24</td>
<td>Region, based on assumption of the fishing type operated by 1—9 persons as standard being constant in the recent ten years (1953—1962).</td>
</tr>
<tr>
<td>22</td>
<td>Region, based on the same assumption as shown in Table 15.</td>
</tr>
<tr>
<td>25</td>
<td>Region, based on the same assumption as shown in Table 15.</td>
</tr>
<tr>
<td>27</td>
<td>Region, based on the same assumption as shown in Table 15.</td>
</tr>
<tr>
<td>37</td>
<td>Diagram representing the results in Table 28.</td>
</tr>
<tr>
<td>45</td>
<td>Monthly changes of the average fatness…</td>
</tr>
<tr>
<td>46</td>
<td>Monthly changes of the average fatness…</td>
</tr>
<tr>
<td>54</td>
<td>mean value of vertebral numbers…</td>
</tr>
<tr>
<td>56</td>
<td>mean value of vertebral numbers…</td>
</tr>
<tr>
<td>60</td>
<td>mean value of vertebral numbers…</td>
</tr>
<tr>
<td>77</td>
<td>mean value of vertebral numbers…</td>
</tr>
<tr>
<td>85</td>
<td>mean value of vertebral numbers…</td>
</tr>
<tr>
<td>97</td>
<td>mean value of vertebral numbers…</td>
</tr>
<tr>
<td>115</td>
<td>mean value of vertebral numbers…</td>
</tr>
<tr>
<td>119</td>
<td>mean value of vertebral numbers…</td>
</tr>
<tr>
<td>128</td>
<td>mean value of vertebral numbers…</td>
</tr>
<tr>
<td>131</td>
<td>mean value of vertebral numbers…</td>
</tr>
</tbody>
</table>

Table 15

<table>
<thead>
<tr>
<th>旅行</th>
<th>修正内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Region, based on the same assumption as shown in Table 15.</td>
</tr>
<tr>
<td>19</td>
<td>Region, based on the same assumption as shown in Table 15.</td>
</tr>
<tr>
<td>21</td>
<td>Region, based on the same assumption as shown in Table 15.</td>
</tr>
<tr>
<td>23</td>
<td>Region, based on the same assumption as shown in Table 15.</td>
</tr>
<tr>
<td>33</td>
<td>Diagram representing the results in Table 28.</td>
</tr>
<tr>
<td>43</td>
<td>Monthly changes of the average fatness…</td>
</tr>
</tbody>
</table>

Table 28

<table>
<thead>
<tr>
<th>旅行</th>
<th>修正内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Monthly changes of the average fatness…</td>
</tr>
<tr>
<td>21</td>
<td>Monthly changes of the average fatness…</td>
</tr>
<tr>
<td>23</td>
<td>Monthly changes of the average fatness…</td>
</tr>
<tr>
<td>33</td>
<td>Monthly changes of the average fatness…</td>
</tr>
<tr>
<td>43</td>
<td>Monthly changes of the average fatness…</td>
</tr>
</tbody>
</table>

Diagram representing the results of yearly variations of water temperature and specific gravity in the period of ten days to that of mean value in December to February during years 1948—1964, based on the ordinary coastal observation of Onomichi Branch Station of Naikai Regional Fisheries Experimental Laboratory.
<table>
<thead>
<tr>
<th>頁</th>
<th>行</th>
<th>誤</th>
<th>正</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>上から4</td>
<td>従者</td>
<td>後者</td>
</tr>
<tr>
<td>142</td>
<td>下から3</td>
<td>30分間捕食させた。</td>
<td>30分間捕食させた。</td>
</tr>
<tr>
<td>144</td>
<td>"</td>
<td>2才魚</td>
<td>1才魚</td>
</tr>
<tr>
<td>144</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>145</td>
<td>Fig. 101.</td>
<td>Iwaki-shima Solid line.</td>
<td>Iwaki-shima: Solid line,</td>
</tr>
<tr>
<td>163</td>
<td>上から8</td>
<td>第74表</td>
<td>第75表</td>
</tr>
<tr>
<td>174</td>
<td>"</td>
<td>着手した。</td>
<td>着手した。</td>
</tr>
<tr>
<td>174</td>
<td>"</td>
<td>着けた。</td>
<td>着けた。</td>
</tr>
<tr>
<td>181</td>
<td>下から2</td>
<td>また第121、122図は</td>
<td>また第121図は</td>
</tr>
<tr>
<td>181</td>
<td>"</td>
<td>したので示す。</td>
<td>したので示し、第122図は線速度を示す。</td>
</tr>
<tr>
<td>187</td>
<td>"</td>
<td>環境を比較すると</td>
<td>環境を比較すると</td>
</tr>
<tr>
<td>194</td>
<td>Table 104.</td>
<td>…of the sand used…</td>
<td>…of the sand used…</td>
</tr>
<tr>
<td>204</td>
<td>Fig. 138.</td>
<td></td>
<td>Fig. 133.</td>
</tr>
<tr>
<td>217</td>
<td>下から6</td>
<td>遅連</td>
<td>遅連</td>
</tr>
<tr>
<td>222</td>
<td>"</td>
<td>跳目</td>
<td>跳目</td>
</tr>
<tr>
<td>237</td>
<td>Table 120.</td>
<td>Searegion</td>
<td>Sea region</td>
</tr>
<tr>
<td>238</td>
<td>Fig. 171.</td>
<td>…Mihara Straitand the…</td>
<td>…Mihara Strait and the…</td>
</tr>
<tr>
<td>254</td>
<td>最上段</td>
<td>表題を入れる</td>
<td>Table 122. Continued.</td>
</tr>
<tr>
<td>261</td>
<td>上から7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>261</td>
<td>下から3</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>262</td>
<td>上から5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>283</td>
<td>"</td>
<td>ほど同様な</td>
<td>ほど同様な</td>
</tr>
<tr>
<td>283</td>
<td>Fig. 196.</td>
<td>Solid line,</td>
<td>Solid line, rainfall;</td>
</tr>
<tr>
<td>284</td>
<td>Table 129.</td>
<td>(ml/m)</td>
<td>(ml/m)</td>
</tr>
<tr>
<td>293</td>
<td>上から3</td>
<td>第125表</td>
<td>第128表</td>
</tr>
<tr>
<td>294</td>
<td>最下段</td>
<td>第129表</td>
<td>第130表</td>
</tr>
<tr>
<td>303</td>
<td>上から9</td>
<td>階と</td>
<td>階と</td>
</tr>
<tr>
<td>303</td>
<td>下から6</td>
<td>村上（1959）、弘田（1961）</td>
<td>村上（1959）、弘田（1961）</td>
</tr>
<tr>
<td>309</td>
<td>上から4</td>
<td>（Takioko）</td>
<td>（Takioko）</td>
</tr>
<tr>
<td>309</td>
<td>"</td>
<td>第129表</td>
<td>第131表</td>
</tr>
<tr>
<td>330</td>
<td>上から3</td>
<td>その年齢の</td>
<td>その年齢の</td>
</tr>
<tr>
<td>331</td>
<td>"</td>
<td>標準換海数</td>
<td>標準換海数</td>
</tr>
<tr>
<td>331</td>
<td>下から2</td>
<td>人工授精</td>
<td>人工授精</td>
</tr>
<tr>
<td>332</td>
<td>上から2</td>
<td>…であった。</td>
<td>…であった。</td>
</tr>
<tr>
<td>332</td>
<td>"</td>
<td>室内実験による生活史</td>
<td>室内実験によって生活史</td>
</tr>
<tr>
<td>335</td>
<td>"</td>
<td>海洋生態学的研究</td>
<td>海洋生物学的研究</td>
</tr>
</tbody>
</table>
STUDIES ON FISHERY BIOLOGY OF THE SAND-LANCE,
AMMODYTES PERSONATUS (GIRARD)

Akira Inoue, Shigeki Takamori, Kazumasa Kuniyuki,
Shinichi Kobayashi and Shigemi Nishina

The sand-lance, Ammodites personatus (Girard), is one of commercially important fishes in Japan, mainly distributing along the coastal waters of Hokkaido, in Northern or Middle Pacific, the Seto Inland Sea and East China Sea Region. Its yearly catches range from 40,000 to 110,000 tons approximately during the past 11 years (1953-‘63). The forecast of its fishing conditions has been strongly expected for a long time by the fishermen concerned, because the annual catches of this fish had distinctly fluctuated.

In this paper, the authors deal with the sand-lance with emphasis on its populations, habit, growth, migration and the environment.

Chapter I

In this chapter, the amount of catch, fishing season, type of fisheries and fish population of the sand-lance in the Japanese waters are analyzed on the basis of the annual reports of the statistics on fishery and aquiculture of Japan (1954-‘64).

In Hiroshima Prefecture, the "Hoop net" is the most important gear for the sand-lance fisheries. Therefore, the authors also investigated the situation specially about the "Hoop net" centering on the relationships between the amount of sand-lance caught by this gear and the velocity of tidal current, the water temperature of breeding season, and the specific gravity on the annual reports of the catch statistics on fishery of Hiroshima Prefecture (1953-‘63).

1. As already mentioned, the annual catch of the sand-lance in Japan showed a wide range of fluctuation. The fishing grounds of this fish are listed in order of total catches as follows; the Seto Inland Sea, the north Pacific coast, and the western and northeastern parts of Hokkaido. In Japan, the average ratio of the sand-lance catch to the total fishes is just about 2%, but it shows up to 8-10% each in the Seto Inland Sea and off shore of west Hokkaido. Further, the ratio reaches 40-50% along the coast of west Hokkaido from May to June and nearly 50% in the Seto Inland Sea from March to April. The fishing season of this species extends from the middle of March to the end of June, having a tendency to be delayed in high latitude areas.

* 内海区水産研究所業績第121号.
2. Judging from the available statistics, the population of the sand-lance seems to consist of 5 groups in Hokkaido Region, 2 groups in the North Pacific, and 1 group each in Middle Pacific, East China Sea and Seto Inland Sea Region.

3. The main fishing gears for the sand-lance are different in each region. The fishing types of "Other kind of small set nets", as described in the statistics in Hokkaido, "Other fisheries" in North Pacific Region, "Pacchi-ami" in Middle Pacific Region, "Other lift nets" in the Seto Inland Sea Region and "Boat seine" in East China Sea Region are essential respectively. The annual catch ratios of the sand-lance to the total fishes for the fishing type of "Other kind of small set nets" indicate 31-62% in Hokkaido, 60-94% of "Other fisheries" in North Pacific Region, 6-27% of "Pacchi-ami" in Middle Pacific Region, 65-87% of "Other lift nets" (including "Hoop net") in the Seto Inland Sea Region and 13-36% of "Boat seine" in East China Sea Region.

4. In Hiroshima Prefecture, the fishing type of "Hoop net", is the most important gear as noted before for the sand-lance fisheries and is operated from March to April.

1) Daily amount of the sand-lance caught by this gear is more or less affected by the velocity of tidal current, namely it is larger at a time of spring tide and smaller at a time of neap tide.

2) Negative correlation between catch per unit effort and fishing effort was observed.

3) The annual amount of the sand-lance catch is regarded the oceanographic conditions such as the water temperature and salinity during the breeding season.

Chapter II

The ecological studies of sand-lance were described with the specimens collected from the Seto Inland Sea.

1. The growth rate in weight or length of the sand-lance differs with the quality and amount of foods available regionally as well as annually, and the size of fish is relatively smaller in the year of good catch.

2. The number of vertebrae ranges from 56 to 67, representing mostly 62 or 63. According to the frequency distributions of vertebral numbers, two groups of sand-lance are seemed to exist in this region, the number at mode was 63 around the western region of the Harima Nada, and was 62 around the eastern region. Average vertebral number of sand-lance varies inversely with its spawning temperature.

3. The ratio of head length to body length diminishes with the development of fish in age.

4. The sex-ratio is approximately 1.

5. The results of scale investigation are as follows;

1) Size of scale is the largest at the portion of lateral line above the middle part of anal fin.

2) The formation of annual rings on scales begin in July and it is almost completed in March of next year.

3) A formula representing the relation between scale length (S×50mm) and body length (L cm) is shown as S=1.478 L−1.523.

6. The age composition of sand-lance caught varies with fishing season, fishing grounds, fishing gears as well as yearly variations. Its life span is estimated as full three years at the longest in the Seto Inland Sea. In general, O-age class occupies more than 80%, one year class under 20% and two year class is less than 5%. In a year of abundance, however, it seems to be probable that one year old adult fish occupy more than 20%.
7. The ratio of gonad weight to body weight reaches up to 18% in December and suddenly decreases after spawning in early January.

8. The diameter of mature eggs of sand-lance is about 0.66 mm. In the laboratory, where the temperature of water-tank is kept higher than 15°C, its matured ovarian ova cannot be obtained. On the contrary, when it is kept at lower temperature (average water temperature 11.17°C), the ovarian ova are ripen.

9. The number of ovarian eggs of sand-lance fluctuates annually with judging from the appearance of ovary, the fish seems to spawn once or twice a season. The weight of right side ovary is generally heavier than the left side one and the number and diameter of ovarian ova are also more and larger in the right.

10. The thermal effects on hatching of sand-lance were studied in the waters of which specific gravities were between 2.317 and 2.340 (at 15°C). The developing period from artificial insemination to hatching was required about 33 days at average water temperature of 6.19°C, and 13 days at 15.74°C respectively. The rate of hatching out showed the best at water temperature of 8.20°C, moderate at 10.48°C and rather low at 15.74°C. The pre-larvae size of sand-lance immediately after hatching out was 3.81 mm in total length.

11. The feeding habit of sand-lance changes with the growing. Young fish mostly feed on nauplius of copepod, while adult fish prey on macro-copepods, Chaetognatha or fish larvae. The composition of foods found in the stomach varies with habitat, and the foods of fast grow fish are mainly composed of Chaetognatha. It is noticeable that the larvae of sand-lance are in food competition with Chaetognatha, as Chaetognatha take mostly copepods, but the latter seldom prey on the former.

12. The feeding frequency and quantity of foods are observed on the benthic life in vitro. The sand-lance took foods twice a day, in the morning and evening. Daily amount of copepods taken by the specimen, was estimated at about 20,000 individuals at the minimum on the fish of 7.2 to 7.4 cm in body length.

13. The time required for food digestion is about 12 hours in estimation.

14. The amount of fat deposit has a seasonal variation and its ratio of young specimens increases from 3% in late March to 5% in late April, finally reaching as high as 9% in late May. The fat content of one year individuals also increases from 2% in late February to 7% in late March and amounts to 8% in late April.

15. The sand-lance begins to burrow into the bottom sand in early May.

16. The selection of bottom conditions by sand-lance is severe, the fish prefers the white sand bottom which consist of grains, 8-32 meshes in size, mingled with 30% of shell fragments.

17. In the aquarium, it takes about 30 minutes for 75-80% of sand-lance to get into sand bottom.

18. The body color of sand-lance changes rapidly. In normal conditions, it takes about two minutes to change the body color from blue to reddish-yellow, but when disturbed, only about 20 seconds are necessary to get the antagonistic body color.

19. The estivation begins when water temperature is higher than 24°C. The authors collected 83 estivating individuals at Tachibana and Hosono-su of the Mihara Strait on August 4 and 6, 1954. Their fatness (body weight/body length^3 x 100) were 2.94—5.14 and their stomachs were empty, but their body cavities were filled with fat-like substance.

20. The parasite found in the body cavity of sand-lance is a species of Nematoda and its number
per specimen varies with the habitat of the host, the maximum confirmed so far as many as 93 individuals.

21. In the daytime, the vertical distribution of larvae of sand-lance mainly concentrates at 6-10 meters depth below the surface, while at night, it is seemed to be deeper.

22. The experiment on endurance to chlorinity of sand-lance showed a euryhaline pattern. The individuals up to 5 cm in body length can survive in the waters of the chlorinity ranged 4.69-24.21%. 23. The oxygen consumption per individual of sand-lances, 6.52-8.60 cm in body length, is about 0.6 cc per hour under the conditions of moderate chlorinities, 15.42-19.93%, and water temperatures at 14.5-19.0°C. The lethal effects were observed when the dissolved oxygen content reached down to about 2 cc per liter.

24. The results of experiment conducted on endurance against the starvation showed that the individuals, 5.09-7.30 cm in body length, were able to survive for the period from April 29 to July 9, 1954, under the conditions of chlorinities of 14.54-18.37%, and of water temperatures at 13.4-24.1°C.

25. The sand-lance can be attracted by fish-lamp.

Chapter III
An ecological study of larval sand-lance was carried out with emphasis on the fishing grounds environmentally and meteorologically.

1. The distribution of the larval sand-lance was investigated.

1) The spawning grounds of this fish are supposed to be three places around Bingo Nada, namely the Mihara Strait, the adjacent waters to Shisaka Islands and the strait of Shiaku Islands.

2) The distribution is strongly influenced by velocity of tidal current as well as the meteorological situations.

3) Considering from the annual quantities of larvae collected by survey boats and their body length composition in January and February during the period from 1960 to 1965, the breeding seasons may vary from year to year. Although it is impossible to forecast clearly whether the year would have a good or poor catch from the results of surveys performed only once in the middle of each month, the certain time of fishing season or the suitable fishing ground is predictable from such data without fail.

4) As a result of experiment, horizontal towing of plankton net was estimated to be the most suitable way to collect sand-lance larvae.

2. In order to investigate the tidal current, 25 drift-bottles were released with report cards from the Kii Suido, the Akashi Channel, the Bungo Suido and the Shimonoseki Channel, and 11 bottles were recollected.

3. The oceanographic surveys including the collection of the larval sand-lance were carried out once a month, from January in 1959 at about 80 stations established in the Bingo Nada. The results are summarized as follows:

1) The water temperatures of the Bingo Nada were higher in the west and lower in the east.

2) The differences of chlorinity was similar to that of water temperature. It was low in the northeastern part of Bingo Nada and strongly affected by the tidal current from Kasaoka Bay.

3) The transparency of waters was higher from May through June than that in December. It seems to be remarkably influenced by operation of small trawl nets (Manga).

4) The suspension factor was highly valued from September through January and was lower in
May and June.

5) The submarine illumination coefficient was smaller in the northern part of Bingo Nada as compared with the other parts.

6) The coefficient of turbidity (r value) was larger from December through January of next year, but was smaller from April through June. Further, the turbidity was smaller in the central part of Bingo Nada than that in other regions.

7) The standing crops of plankton reached to the maximum in July and its density generally seems to be higher in the northeastern part of Bingo Nada.

8) The number of Chaetognatha attained to the maximum in July and August. *Sagitta naikaiensis* was a dominant species in recent years and broadly distributes in the eastern or northeastern Bingo Nada. Larvae of sand-lance compete with Chaetognatha for copepods as foods, and it seemed that the negative correlation, such as larger catch of sand-lance with smaller population of Chaetognatha, was observed.

9) The mutual relationships among the various environmental conditions investigated are as follows:

1) The transparency negatively correlates with the suspension factor and the coefficient of turbidity.

2) The circulation of water mass in the Bingo Nada is presumed from the correlations between chlorinity, transparency and settling volume of plankton obtained at the stations. It is, further, shown that the Bingo Nada is the mingling area of the east and the west tidal currents, though each pattern is changed annually.

10) The bottom soil of the Bingo Nada was mostly composed of mud as small as 100 mesh size, but rocks and/or pebbles were found on the bottoms near and along the islands. These support the investigated results of soil by a “penetrometer”, and the values of ignition loss showed larger in the middle and smaller in the east and the west parts of the Bingo Nada.

11) In the breeding area of sand-lance, increase of chlorinity is usually accompanied with water temperature.

4) The meteorological conditions regard the habit of larvae of sand-lance. In particular, the disperse of larval sand-lance is remarkably influenced by wind conditions.
<table>
<thead>
<tr>
<th>篇目</th>
<th>次元</th>
</tr>
</thead>
<tbody>
<tr>
<td>序言</td>
<td>6</td>
</tr>
<tr>
<td>謝辞</td>
<td>8</td>
</tr>
<tr>
<td>第1章 イカナゴ漁業について</td>
<td>8</td>
</tr>
<tr>
<td>第1節 全国における個別漁業状況</td>
<td>8</td>
</tr>
<tr>
<td>第2節 海域別漁獲量</td>
<td>13</td>
</tr>
<tr>
<td>第3節 漁期</td>
<td>15</td>
</tr>
<tr>
<td>第4節 イカナゴ漁業種類別漁獲量</td>
<td>15</td>
</tr>
<tr>
<td>第1項 空気特別漁業種類別漁獲量</td>
<td>15</td>
</tr>
<tr>
<td>第2項 海区特別漁業種類別漁獲量</td>
<td>17</td>
</tr>
<tr>
<td>第3項 海区特別漁業種類別漁獲量</td>
<td>18</td>
</tr>
<tr>
<td>第5節 単位努力当たり漁獲量</td>
<td>18</td>
</tr>
<tr>
<td>第6節 広島県下におけるイカナゴ漁業</td>
<td>27</td>
</tr>
<tr>
<td>第1項 漁獲量</td>
<td>27</td>
</tr>
<tr>
<td>第2項 イカナゴ袋付魚育漁業</td>
<td>29</td>
</tr>
<tr>
<td>第3項 イカナゴ袋付魚育漁業</td>
<td>35</td>
</tr>
<tr>
<td>第2章 イカナゴの生態に関する基礎的研究</td>
<td>41</td>
</tr>
<tr>
<td>第1節 成長</td>
<td>41</td>
</tr>
<tr>
<td>第1項 形態</td>
<td>41</td>
</tr>
<tr>
<td>第2項 体長</td>
<td>42</td>
</tr>
<tr>
<td>第3節 肥満度</td>
<td>50</td>
</tr>
<tr>
<td>第1項 深海内海の産地別椎骨数</td>
<td>57</td>
</tr>
<tr>
<td>第2項 深海内海の県別漁獲統計による魚群の推定</td>
<td>60</td>
</tr>
<tr>
<td>第3項 尾部付近のイカナゴ椎骨数の変異と水温についての予備的検討</td>
<td>61</td>
</tr>
<tr>
<td>第4項 産卵環境調査（その1）微細魚場環境調査</td>
<td>67</td>
</tr>
<tr>
<td>第5項 産卵環境調査（その2）産卵場周辺の海水環境調査</td>
<td>83</td>
</tr>
<tr>
<td>第6節 椎骨数の変異と水温</td>
<td>85</td>
</tr>
<tr>
<td>第4節 前足と体長</td>
<td>88</td>
</tr>
<tr>
<td>第5節 側比</td>
<td>90</td>
</tr>
<tr>
<td>第6節 腕理</td>
<td>90</td>
</tr>
<tr>
<td>第1項 採漁場と骨骼</td>
<td>93</td>
</tr>
<tr>
<td>第2項 防寒出場時</td>
<td>96</td>
</tr>
<tr>
<td>第3項 睡長、骨長と体長の関係</td>
<td>97</td>
</tr>
<tr>
<td>第7節 年令組成</td>
<td>98</td>
</tr>
<tr>
<td>第8節 生殖腺</td>
<td>102</td>
</tr>
<tr>
<td>第1項 生殖腺の季節的変化</td>
<td>102</td>
</tr>
<tr>
<td>第2項 水温と卵径変化</td>
<td>103</td>
</tr>
<tr>
<td>第3項 水温と生殖腺重量</td>
<td>105</td>
</tr>
<tr>
<td>第4項 孢卵数</td>
<td>105</td>
</tr>
<tr>
<td>第5項 孢卵魚の時期的変化</td>
<td>111</td>
</tr>
<tr>
<td>第9節 水温と孵化率</td>
<td>113</td>
</tr>
<tr>
<td>第10節 比重と孵化率</td>
<td>118</td>
</tr>
<tr>
<td>第11節 水温、比重の変化と卵径</td>
<td>119</td>
</tr>
<tr>
<td>第12節 食性</td>
<td>121</td>
</tr>
<tr>
<td>第1項 飼の種類</td>
<td>121</td>
</tr>
<tr>
<td>第2項 投餌量</td>
<td>137</td>
</tr>
<tr>
<td>第13節 脂肪含有量の季節的変化</td>
<td>144</td>
</tr>
<tr>
<td>第14節 個別としてのPlanktonの季節的変化</td>
<td>150</td>
</tr>
<tr>
<td>第15節 日週期活動</td>
<td>156</td>
</tr>
<tr>
<td>第16節 底質選択性</td>
<td>162</td>
</tr>
<tr>
<td>第17節 砂中增殖速度</td>
<td>165</td>
</tr>
<tr>
<td>第18節 体色変化</td>
<td>167</td>
</tr>
<tr>
<td>第19節 夏眠</td>
<td>168</td>
</tr>
<tr>
<td>第20節 寄生虫</td>
<td>173</td>
</tr>
<tr>
<td>第21節 養育魚育成</td>
<td>174</td>
</tr>
<tr>
<td>第22節 穴穴構築における抵抗</td>
<td>193</td>
</tr>
<tr>
<td>第23節 産卵育成長の絶対密度</td>
<td>195</td>
</tr>
<tr>
<td>第24節 養育育成長試験</td>
<td>199</td>
</tr>
<tr>
<td>第25節 孵化育成</td>
<td>201</td>
</tr>
<tr>
<td>第3章 異常変異およびその周辺海域におけるイカナゴ種仔の分布と環境について</td>
<td>203</td>
</tr>
<tr>
<td>第1節 種仔の分布</td>
<td>204</td>
</tr>
<tr>
<td>第1項 種仔の分布</td>
<td>204</td>
</tr>
<tr>
<td>第2項 種仔採集個体数と体長</td>
<td>218</td>
</tr>
<tr>
<td>第3項 種仔採集方法の比較</td>
<td>222</td>
</tr>
<tr>
<td>第2節 種仔採集時期の変化</td>
<td>226</td>
</tr>
<tr>
<td>第3節 海流方向調査による深海内海の潮流</td>
<td>232</td>
</tr>
<tr>
<td>第4節 海流</td>
<td>233</td>
</tr>
<tr>
<td>第1項 水温</td>
<td>233</td>
</tr>
<tr>
<td>第2項 塩分量</td>
<td>243</td>
</tr>
<tr>
<td>第3項 透明度</td>
<td>250</td>
</tr>
<tr>
<td>第4項 懸濁質質数</td>
<td>261</td>
</tr>
<tr>
<td>第5項 水温</td>
<td>268</td>
</tr>
<tr>
<td>第6項 潮度</td>
<td>272</td>
</tr>
<tr>
<td>第7項 Plankton</td>
<td>282</td>
</tr>
<tr>
<td>第8項 ヤム類</td>
<td>284</td>
</tr>
<tr>
<td>第9項 水塊の動き</td>
<td>316</td>
</tr>
<tr>
<td>第10項 水温</td>
<td>316</td>
</tr>
<tr>
<td>第11節 イカナゴ産卵環境</td>
<td>325</td>
</tr>
<tr>
<td>第5節 気象</td>
<td>326</td>
</tr>
<tr>
<td>第1項 風力、風向</td>
<td>326</td>
</tr>
<tr>
<td>第2項 雨量</td>
<td>329</td>
</tr>
<tr>
<td>結 語</td>
<td>330</td>
</tr>
<tr>
<td>文献</td>
<td>333</td>
</tr>
</tbody>
</table>
序

イカナゴは、玉筋魚、以名古、とも書かれ、地方によっては、カナギ、コウナゴ（小女子）、メロオド、カラスジャコ、カマスナゴ、アブラウオ、シャホラロとよばれる（旧中、1941）、また稚魚をコナまたはシソコ、親魚をアロまたはオタコともよび、古くから大衆魚として親しまれてい

食物連鎖区分からみたイカナゴの生態的学的部位は、カタクイイワと同様に低いが、魚食性魚類あるいは

海鳥、水鳥類の飼料としてきわめて重要な意義をもっている。

イカナゴの分類学的研究は、JORDAN（1901），FORD（1920），RAITT（1934），LINDBERG（1937），CORBIN

（1949），などによって行われているが、松原（1955）は、この間の総括について詳細に述べた。世界の

イカナゴ類は、次の9種類である、このうち日本のものは、Ammodites personatus（GIARD）1種のみである。

1. Ammodites hexapterus（PALLAS）。カムチャッカ、アリューシャン

2. Ammodites lanceolatus（LESOUVAIGNE）。イギリス、ドイツ

3. Ammodites tobianus（LINNAEUS）。イギリス、ドイツ

4. Ammodites marinus（RAITT）。イギリス

5. Ammodites alascanus（COPE）。アラスカ

6. Ammodites americanus（De KAY）。アメリカ大西洋沿岸

7. Ammodites personatus（GIARD）。フロッキーヤ、ぺリや日本、カリフォルニア

8. Ammodites dubius（REINHOLDT）。北アメリカ

9. Ammodites cicerellus（RAFINESQUE）。

(1) Gymnaammodites semisquammatus（RAITT）。ノルウェー、ボルタル

(2) Gymnaammodites Pagei（PAGE）。地中海

またイカナゴの生態的学的研究は、わが国では、地方的変異を取り扱った川村（1940）：イカナゴ脊椎骨数

から金華山沖の魚群を、北海道群と利尻湾群との混合群と推論した畑中・岡本（1949）：満戸内海群の有胚

数、成長度、発生経過に関する井上（1949，52）：年令、脊椎骨数などについて論じた内橋（1950）、大島

（1950）、横内（1957）の報告がある。さらに北海道産イカナゴの漁期水温、プランクトン相、成長度、食

性について元田（1950）：魚群構造について内橋（1957）：年令と成長について北片（1957）の報告があ

り、伊勢湾産イカナゴの稚魚分布に関する宮村（1959）の報告がある。このほか最近では、イカナゴ発生

環境、イカナゴ捕およびイカナゴの夜間浮上を取扱った千田（1964，65）：イカナゴ食性とサジッタとの

食餌関係：捕獲機会、大阪湾のイカナゴ発生量変動について沢田（1965-67）の報告がある。

外国での報告は、Ammodites tobianus（L.）の生態に関するものが主で、その稚魚形態についてMcINTOSH,

W. C., E. E. PRINCE（1890）分布と産卵習性、回遊などについてMARK A.（1961）：垂直分布と回遊について

RYLAND（1964）の報告がある。しかし、これらの研究はほとんど片段的で、資源研究の目的であ

る漁業管理、漁況予報に用いられたものは少ない。

筆者の一貫上は、1946年農林省水産試験場福井臨時試験地で取扱われた。また同地はイカナ

の産地で、4月の盛漁期には海浜一面に浮かび上がったイカナゴで埋まり、幾百尾もイカナゴの浜辺に捨てられ

た。これを収穫して、上血天秤と物差しを用いた調査を開始したが、魚の余巻を恒年よくとおこなるイカナ

ゴ生態の一断面を知ることができた。1954年から発表した漁況予報は完熟し、1964年には瀬戸内海東部で北

京、岡山両県水産試験場との協同調査を止めた。さらに1965年では、香川県水産試験場の参加も決定し、強

力な調査態度が見られるようになった。本研究が、イカナゴ漁業に利用されるに至った現状に多少とも満足し、さらに未利用資源の開発を念願するものである。

なお本報告は、内海区水産研究所報告（1952）に発表した以後の調査・研究を一括取りまとめたもので、

次の、日本水産学会中四国支部例会ならびに大阪大学において口頭発表し、その概要は1962年4月プリントに

して瀬戸内海沿岸県水産試験場に配布した。*
本研究の分担は主として井上が当たり、高森、国行はもと海洋観測；小林、仁科は研究の一部を分担した。

謝辞

本研究はかなり長期にわたるもので、その間、ご援助をいただいた内海区水産研究所長岡冨博士、岡山中義一氏、ならびにご校閲をさわらわしさ前所長村上子男博士、所長猪野俊雄博士に謳して感謝の意を表する。またご教示とご鞭撻を賜った東京大学大島泰雄博士、北海道大学元田茂博士、東京水産大学石山利紀博士、内海区水産研究所林知夫博士、水戸敏博士、藤谷隆博士に厚くお礼を申し上げるとともに、調査にご協力いただいた内海区水産研究所尾道試験場小出高弘氏に深く感謝の意を表する。さらに調査材料を提供された兵庫、岡山、愛媛、香川、徳島、山口の各県水産試験場、滋賀市水産業協同組合、淡路島漁業協同組合、新岡倉氏、尾道市水産業協同組合光谷八助氏、水戸川盛一氏、吉井若松氏、松谷松夫氏、三原市幸崎漁業協同組合、ならびに福山市海産業協同組合に感謝の意を表する。

第1章 イカナゴ漁業について

本章は、農林省経済局統計調査部、漁業兼養殖漁業統計表（1954－64）に基づき、全国イカナゴ漁業の概要を述べ、さらに広島県漁獲業統計報告（1953－63）によって、漁獲量変動を気象ならびに漁況と対比した。

第1節 全国ならびに海区別漁獲量

農林省経済局統計調査部、漁業兼養殖漁業統計表（1954－64）によれば、全国のイカナゴ漁獲量は第1表に示す通りで、これを年別に図示すると第1図のようになる。

Table 1. Monthly changes of the sand-lance catch during years 1953-1963 in Japan. (Numerals within parentheses represent the percentage of sand-lance catch to the total catch of marine fish.) Unit: ton.

<table>
<thead>
<tr>
<th>Month</th>
<th>1953</th>
<th>'54</th>
<th>'55</th>
<th>'56</th>
<th>'57</th>
<th>'58</th>
<th>'59</th>
<th>'60</th>
<th>'61</th>
<th>'62</th>
<th>'63</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan.</td>
<td>158</td>
<td>431</td>
<td>356</td>
<td>559</td>
<td>664</td>
<td>1,069</td>
<td>800</td>
<td>800</td>
<td>949</td>
<td>264</td>
<td></td>
</tr>
<tr>
<td>Feb.</td>
<td>769</td>
<td>1,501</td>
<td>1,613</td>
<td>1,556</td>
<td>3,293</td>
<td>3,759</td>
<td>3,079</td>
<td>2,935</td>
<td>3,804</td>
<td>2,687</td>
<td>1,498</td>
</tr>
<tr>
<td>Mar.</td>
<td>6,342</td>
<td>6,120</td>
<td>5,504</td>
<td>8,186</td>
<td>9,109</td>
<td>9,113</td>
<td>10,736</td>
<td>11,579</td>
<td>14,310</td>
<td>11,658</td>
<td>6,238</td>
</tr>
<tr>
<td>Apr.</td>
<td>17,273</td>
<td>8,160</td>
<td>11,029</td>
<td>19,226</td>
<td>19,883</td>
<td>17,159</td>
<td>13,373</td>
<td>15,932</td>
<td>26,570</td>
<td>12,112</td>
<td>13,489</td>
</tr>
<tr>
<td>May</td>
<td>15,075</td>
<td>6,026</td>
<td>19,369</td>
<td>23,530</td>
<td>27,469</td>
<td>32,783</td>
<td>22,348</td>
<td>17,862</td>
<td>32,718</td>
<td>23,274</td>
<td>27,419</td>
</tr>
<tr>
<td>June</td>
<td>17,848</td>
<td>14,704</td>
<td>15,430</td>
<td>17,970</td>
<td>18,614</td>
<td>28,809</td>
<td>10,413</td>
<td>18,892</td>
<td>23,687</td>
<td>14,723</td>
<td>24,416</td>
</tr>
<tr>
<td>July</td>
<td>3,765</td>
<td>4,916</td>
<td>3,173</td>
<td>3,041</td>
<td>5,550</td>
<td>3,157</td>
<td>5,587</td>
<td>8,519</td>
<td>4,309</td>
<td>3,964</td>
<td>7,224</td>
</tr>
<tr>
<td>Aug.</td>
<td>109</td>
<td>461</td>
<td>1,054</td>
<td>521</td>
<td>488</td>
<td>775</td>
<td>1,595</td>
<td>1,833</td>
<td>525</td>
<td>493</td>
<td>898</td>
</tr>
<tr>
<td>Sep.</td>
<td>86</td>
<td>68</td>
<td>60</td>
<td>38</td>
<td>49</td>
<td>168</td>
<td>337</td>
<td>153</td>
<td>100</td>
<td>5</td>
<td>41</td>
</tr>
<tr>
<td>Oct.</td>
<td>11</td>
<td>4</td>
<td>90</td>
<td>8</td>
<td>64</td>
<td>203</td>
<td>86</td>
<td>30</td>
<td>34</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Nov.</td>
<td>821</td>
<td>26</td>
<td>814</td>
<td>660</td>
<td>503</td>
<td>735</td>
<td>211</td>
<td>271</td>
<td>1,074</td>
<td>63</td>
<td>1,228</td>
</tr>
<tr>
<td>Dec.</td>
<td>533</td>
<td>23</td>
<td>251</td>
<td>248</td>
<td>1,324</td>
<td>311</td>
<td>177</td>
<td>639</td>
<td>419</td>
<td>186</td>
<td>108</td>
</tr>
<tr>
<td>Total</td>
<td>65,805</td>
<td>42,855</td>
<td>58,740</td>
<td>77,565</td>
<td>87,228</td>
<td>98,047</td>
<td>68,828</td>
<td>79,002</td>
<td>108,358</td>
<td>70,121</td>
<td>83,672</td>
</tr>
<tr>
<td>(2.05)</td>
<td>(1.36)</td>
<td>(1.74)</td>
<td>(2.35)</td>
<td>(2.36)</td>
<td>(2.59)</td>
<td>(1.75)</td>
<td>(2.08)</td>
<td>(2.60)</td>
<td>(1.69)</td>
<td>(2.07)</td>
<td></td>
</tr>
</tbody>
</table>

— 8 —
第1図より1953—1963年の11年間にわたるイカノス漁獲量変動をみると、1954年に極小、1958、1961年に極大を示し、漁獲量変動の幅はきわめて大きいことがわかる。またイカノス漁獲量と全漁獲魚類との割合は、ほぼ2％前後を示す。このようにイカノス漁獲量の年変動が大きいことは漁業者に経済的負担を強く与える。

第1表について、年別に月別のイカノス漁獲量の大きいものを順に1—4までの順位を付け、第1位に4、第2位に3、第3位に2、第4位に1と指数を与えて、イカノスの全国的な旬漁期を推定すると第2図のようになる。これによって全国的イカノス漁期は5月で、4月および6月がこれにつづく。

各海区について年別のイカノス漁獲量と、魚類総漁獲量との百分率を示すと、第2表のようになる。

第2表からイカノス漁獲量の大きい海区を探るために年別に大きい海区に順位をつけ、その順位の逆数を指数として集計すると、第3表のようになる。
Table 3. Annual changes of the regional catch index and the order of catch during years 1953-1963.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Northeast Hokkaido R.</td>
<td></td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>68</td>
<td>4</td>
</tr>
<tr>
<td>South Hokkaido R.</td>
<td></td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>40</td>
<td>6</td>
</tr>
<tr>
<td>West Hokkaido R.</td>
<td></td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>81</td>
<td>3</td>
</tr>
<tr>
<td>North Pacific R.</td>
<td></td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>82</td>
<td>2</td>
</tr>
<tr>
<td>Middle Pacific R.</td>
<td></td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>9</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>64</td>
<td>5</td>
</tr>
<tr>
<td>North Japan Sea R.</td>
<td></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td>West Japan Sea R.</td>
<td></td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td>East China Sea R.</td>
<td></td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>34</td>
<td>7</td>
</tr>
<tr>
<td>Seto Inland Sea R.</td>
<td></td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>6</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>92</td>
<td>1</td>
</tr>
</tbody>
</table>

Fig. 3. Yearly changes of sand-lance catch in each region during years 1953-1963. Left: crosses, West Hokkaido R.; solid circles, Northeast Hokkaido R.; soft circles, South Hokkaido. R., Middle: solid circles, North Pacific R.; soft circles, Middle Pacific R. Right: solid circles, Seto Inland Sea R.; soft circles, East China Sea R.
第3表によると、各地区のイカナゴ漁獲量は、瀬戸内海区が最も大きく、太平洋北区、北海道西区、北海道東北区、太平洋中区がこれについて大きい。

第3図は、第2表から区別のイカナゴ漁獲量を年別に示したものので、この図からも漁獲順位は同様なことがうかがわれる。さらに各区区とも漁獲量変動は大きく、北海道西区は年々減少の傾向を示すが、北海道南区、太平洋北区は、ともに増加の傾向が強い。このことについて、その主因を推定することは困難であるが、今後漁況変動とも考え合わせて検討する必要がある。

第2表から地区間のイカナゴ漁獲量について、その増減の傾向を深く、示区間とも増または減のばあいを+1：一方が増、他方が減のばあいを−1として、区間間の相関をみると第4表のようにになる。

Table 4. Regional mutuality of the sand-lance catch during the period of 11 years (1953–1963).

<table>
<thead>
<tr>
<th>Region</th>
<th>Northeast Hokkaido R.</th>
<th>South Hokkaido R.</th>
<th>West Hokkaido R.</th>
<th>North Pacific R.</th>
<th>Middle Pacific R.</th>
<th>East China Sea R.</th>
<th>Seto Inland Sea R.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northeast Hokkaido R.</td>
<td>−4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Hokkaido R.</td>
<td></td>
<td>−6</td>
<td>−4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Hokkaido R.</td>
<td></td>
<td>0</td>
<td>+2</td>
<td>−4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Pacific R.</td>
<td></td>
<td>0</td>
<td>−2</td>
<td>+0</td>
<td>+2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle Pacific R.</td>
<td></td>
<td>0</td>
<td>−6</td>
<td>+8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East China Sea R.</td>
<td></td>
<td>−2</td>
<td>0</td>
<td>−2</td>
<td>+4</td>
<td>0</td>
<td>+2</td>
</tr>
<tr>
<td>Seto Inland Sea R.</td>
<td></td>
<td>−2</td>
<td>0</td>
<td>−6</td>
<td>+8</td>
<td>0</td>
<td>+2</td>
</tr>
</tbody>
</table>

第4表によると、北海道東北区—北海道西区には高い相関がみられる。

Fig. 4. Yearly changes of the catch ratio in percentage between the sand-lance and the total fish in each region. Left; crosses, West Hokkaido R.; solid circles, Northeast Hokkaido R.; soft circles, South Hokkaido R. Middle; solid circles, North Pacific R.; soft circles, Middle Pacific R. Right; solid circles, Seto Inland Sea R.; soft circles, East China Sea R.

第4図は、区区ごとの魚類総漁獲量に対するイカナゴ漁獲量の百分率を年別に示したものである。これによると、瀬戸内海区および北海道西区はイカナゴ漁獲量の割合が目だって大きいことがわかる。
つぎにイカナゴの漁獲量が、全魚類漁獲量に対し割合の大きい 6 海区について、年々の月別イカナゴ漁獲割合を図示すると第 5 図のようになる。

Fig. 5. Monthly changes of catch ratio in percentage between the sand lance and the total fish during years 1953-1962 by the different regions.

魚類総漁獲量に占めるイカナゴ漁獲量の割合は、瀬戸内海区、北海道西区、太平洋北区で大きい。ことに瀬戸内海区では、3-5 月のイカナゴ漁獲量は、魚類総漁獲量の 30% 以上。また北海道西区では 5-6 月に
第2節 地域別漁獲量

第5表は、農林水産統計報告（1954—1964）に基づいて、1953年から1963年までの11年間で、イカナゴ漁獲量の大きい産地名を、その年別漁獲量とともに示す。

Table 5. Yearly changes of the sand-lance catch during years 1953–1963 in main districts. Unit: ton.

<table>
<thead>
<tr>
<th>Year</th>
<th>District</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hyogo</td>
<td>Soya</td>
<td>Miyagi</td>
<td>Mie</td>
<td>Siribesi</td>
<td>Rumoe</td>
<td>Oshima</td>
<td>Kagawa</td>
<td></td>
</tr>
<tr>
<td>1953</td>
<td>16,046</td>
<td>4,774</td>
<td>9,840</td>
<td>5,389</td>
<td>6,036</td>
<td>4,681</td>
<td>1,654</td>
<td>2,805</td>
<td></td>
</tr>
<tr>
<td>1954</td>
<td>3,360</td>
<td>5,246</td>
<td>1,721</td>
<td>5,858</td>
<td>8,550</td>
<td>4,920</td>
<td>86</td>
<td>1,856</td>
<td></td>
</tr>
<tr>
<td>1955</td>
<td>11,295</td>
<td>10,541</td>
<td>3,724</td>
<td>2,239</td>
<td>7,890</td>
<td>3,863</td>
<td>1,800</td>
<td>3,188</td>
<td></td>
</tr>
<tr>
<td>1956</td>
<td>13,613</td>
<td>9,349</td>
<td>11,119</td>
<td>7,751</td>
<td>7,530</td>
<td>4,403</td>
<td>5,284</td>
<td>2,370</td>
<td></td>
</tr>
<tr>
<td>1957</td>
<td>11,164</td>
<td>10,841</td>
<td>10,301</td>
<td>11,944</td>
<td>6,096</td>
<td>8,524</td>
<td>3,199</td>
<td>2,171</td>
<td></td>
</tr>
<tr>
<td>1958</td>
<td>17,623</td>
<td>15,535</td>
<td>10,339</td>
<td>3,842</td>
<td>8,616</td>
<td>16,008</td>
<td>3,029</td>
<td>2,895</td>
<td></td>
</tr>
<tr>
<td>1959</td>
<td>12,243</td>
<td>7,237</td>
<td>11,272</td>
<td>5,193</td>
<td>7,378</td>
<td>3,584</td>
<td>4,663</td>
<td>2,143</td>
<td></td>
</tr>
<tr>
<td>1960</td>
<td>10,121</td>
<td>12,267</td>
<td>13,390</td>
<td>7,548</td>
<td>9,425</td>
<td>3,273</td>
<td>5,651</td>
<td>1,576</td>
<td></td>
</tr>
<tr>
<td>1961</td>
<td>28,153</td>
<td>12,097</td>
<td>25,458</td>
<td>8,068</td>
<td>5,480</td>
<td>3,516</td>
<td>3,496</td>
<td>4,196</td>
<td></td>
</tr>
<tr>
<td>1962</td>
<td>8,856</td>
<td>8,551</td>
<td>10,960</td>
<td>4,260</td>
<td>4,824</td>
<td>6,604</td>
<td>3,883</td>
<td>2,751</td>
<td></td>
</tr>
<tr>
<td>1963</td>
<td>22,036</td>
<td>6,642</td>
<td>17,750</td>
<td>4,985</td>
<td>3,424</td>
<td>2,194</td>
<td>4,328</td>
<td>2,211</td>
<td></td>
</tr>
</tbody>
</table>

イカナゴ漁獲量を比較するば、地方によって漁具、漁法を異にし、漁期によって質的変化を生じ、さらに経済的な理由から、漁獲努力は地方ごとに異なるはずである。第5表には、これらの考慮が払われていないが、全国のイカナゴ主要産地を第5表から探ることとした。すなわち、年別に漁獲量の大きい地域を順に第1位から第10位までにマークし、第1位に10、第2位に9、第3位に8と、それぞれ順位にしたがって1から10までの指数を与えて集計すると、第6表のようになる。これによると、兵庫県が最も大きく、宮城県、栃木県、富山県がこれに次いで大きい。

さきにも述べたように、地域ごとに漁獲の状況は異なるが、1953年から1963年までの期間におけるイ
Table 6: Yearly changes of the sand lance during years 1953-1963 by districts

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

Table 7: Regional mutuality of the sand lance catch during years 1953-1963

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

Table 8: Yearly changes of the "index" for the proceeds of sand lance on
太平洋北区には、青森、岩手—岩手の2型：太平洋中区には、愛知—三重の1型：瀬戸内海区には、兵庫—岡山—香川の1型：東部沿岸区には、福岡の1型が存在するようである。また太平洋北区の青森型は、北海道区の石狩—十勝—樺山型と密接な相関がある。細中ら（1949）は、イカナゴ有稚骨数の測定から、金華山沖合で北海道産イカナゴ群と伊勢湾産イカナゴ群が混 合すると報告した。しかし、漁獲統計から得た漁獲量の相関からみると、岩手群は宮城群と密接に相関し、伊勢湾群との相関はない。石垣ら（1957）は、北海道周辺におけるイカナゴ群は1つであるが、内部構造において地方型があり、その地方型が鉛線状になっていると報告した。北海道区のイカナゴ群は、漁獲量変動の模様から推定すると、前述のように5群が区分されようである。

第3節 渔 期

さきに全国のイカナゴ漁獲量は、5月が最も大きく、4月および6月がこれにつづいて大きいことがわかった。海区別のイカナゴ漁獲量を、農林水産統計月報から月別に出し、各海区ごとに各年の漁獲量を月別に注目し、漁獲量の大きい月を第1位から第4位までにマークし（漁獲月数の少ないばあいは、第1位から第3位までをマークする）、第1位に4、第2位に3、第3位に2、第4位に1と、それぞれ順位にしたうがって指数を与え、1953年から1962年までを数計すると第7回のようになる。

これによって、各海区の漁況の模様を探ると、東部沿岸区、日本沿岸区は3、4月：瀬戸内海区、太平洋中区は3、4、5月：日本沿岸区は4、5月；太平洋沿岸区は4、5、6月：北海道沿岸区は5、6月；北海道沿南区、同東北区は5、6、7月に、それぞれイカナゴ盛漁期を迎え、漁期は低緯度地方から高緯度地方に移ることがわかる。

第4節 イカナゴ漁業種類と漁獲量

第1項 海区別イカ漁業種類別漁獲量

イカナゴ漁獲に使用される漁具は地方によって異なるが、農林水産統計報告（1954—1964）から大綱を掲げることにする。

Fig. 6. Map representing the interrelation among landing places based on catch fluctuation.

Fig. 7.（1-3）. Monthly changes of the "index" of fishing season in the regions.
第8表は、漁業種別漁獲量について、各地区ごとに年々の漁獲量の大きいものから順に、第1位から第4位までをマークして、これに4から1までの指数を与えて集計したものである。なお順位が第4位まで得られなかった場合、それぞれ順位の逆数を指数とした。

Table 8. "Indices" of the principal fisheries by the regions.

<table>
<thead>
<tr>
<th>Region</th>
<th>Type of fisheries</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Japan</td>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2</td>
<td>33</td>
<td>—</td>
<td>—</td>
<td>26</td>
<td>—</td>
<td>21</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hokkaido Region</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>7</td>
<td>—</td>
<td>18</td>
<td>6</td>
<td>—</td>
<td>—</td>
<td>36</td>
<td>2</td>
<td>—</td>
<td>16</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Pacific R.</td>
<td></td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>23</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>23</td>
<td>—</td>
<td>—</td>
<td>12</td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle Pacific R.</td>
<td></td>
<td>—</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>11</td>
<td>5</td>
<td>24</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Japan Sea R.</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1</td>
<td>4</td>
<td>25</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>West Japan Sea R.</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>9</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>22</td>
<td>7</td>
<td>13</td>
<td>5</td>
<td>16</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>East China Sea R.</td>
<td></td>
<td>2</td>
<td>12</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>15</td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>5</td>
<td>1</td>
<td>36</td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Seto Inland Sea R.</td>
<td></td>
<td>31</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>39</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>7.5</td>
<td>20</td>
<td>2.5</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

(1) Small trawl. Other kind of “Teguri”.
(2) Small sail-trawl.
(3) Other kind of trawls.
(4) One-boat purse seine.
(5) Two-boat medium trawl operating east of 130°E.
(6) Semi-surrounding net.
(7) Other surrounding nets.
(8) Other lift nets.
(9) Other gill nets.
(10) Other kind of large set net.
(11) Pound net with some cube shaped bags.
(12) Other kind of small set net.
(13) Beach seine.
(14) Pacchi-ami.
(15) Boat seine.
(16) Other fisheries.

第8表によって、各地区ごとにイカ類漁獲の主要漁業種類をみると、全国では「その他の敷網」および「その他の小型定置網」が最も多くの漁獲量を示し、北海道区では「その他の小型定置網」、太平洋北区では「その他の漁業」、太平洋中区では「バチ網」、日本海北区では「その他の小型定置網」、日本海西区では「地びき網」、東海沖海区では「地びき網」、瀬戸内海区では「その他の敷網」が、それぞれの海区での主要漁業種
Table 9. Percentages of the sand-lance catch to the total fish by types of fisheries and regions during years 1953-1962.

<table>
<thead>
<tr>
<th>Region</th>
<th>Type of fisheries</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>10</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1953</td>
<td>Small trawl other than "Teguri"</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.47</td>
<td>4.79</td>
<td>0.83</td>
<td>57.22</td>
<td>4.42</td>
<td>-</td>
<td>31.94</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>1954</td>
<td>Small sail-trawl.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.43</td>
<td>13.19</td>
<td>1.75</td>
<td>57.90</td>
<td>7.60</td>
<td>-</td>
<td>14.08</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1955</td>
<td>Other kind of trawls.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>14.55</td>
<td>8.41</td>
<td>0.67</td>
<td>50.67</td>
<td>2.82</td>
<td>-</td>
<td>20.25</td>
<td>2.56</td>
<td></td>
</tr>
<tr>
<td>1956</td>
<td>One-boat purse seine.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>30.52</td>
<td>2.36</td>
<td>0.87</td>
<td>41.52</td>
<td>1.70</td>
<td>-</td>
<td>18.72</td>
<td>3.98</td>
<td></td>
</tr>
<tr>
<td>1957</td>
<td>Other surrounding nets.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>32.63</td>
<td>2.19</td>
<td>2.33</td>
<td>29.03</td>
<td>4.66</td>
<td>-</td>
<td>14.30</td>
<td>14.58</td>
<td></td>
</tr>
<tr>
<td>1958</td>
<td>Other kind of large set net.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>29.95</td>
<td>3.31</td>
<td>1.21</td>
<td>20.52</td>
<td>1.90</td>
<td>-</td>
<td>10.09</td>
<td>32.89</td>
<td></td>
</tr>
<tr>
<td>1959</td>
<td>Other lift nets.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>31.92</td>
<td>1.04</td>
<td>0.61</td>
<td>41.08</td>
<td>1.18</td>
<td>-</td>
<td>15.97</td>
<td>7.85</td>
<td></td>
</tr>
<tr>
<td>1960</td>
<td>Beach-seine.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18.56</td>
<td>17.08</td>
<td>6.70</td>
<td>35.64</td>
<td>1.80</td>
<td>-</td>
<td>16.60</td>
<td>2.95</td>
<td></td>
</tr>
<tr>
<td>1961</td>
<td>Boat-seine.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18.25</td>
<td>10.32</td>
<td>11.24</td>
<td>2.11</td>
<td>31.74</td>
<td>0.16</td>
<td>-</td>
<td>6.68</td>
<td>19.49</td>
</tr>
<tr>
<td>1962</td>
<td>Other fisheries.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>17.41</td>
<td>10.07</td>
<td>5.86</td>
<td>2.72</td>
<td>26.47</td>
<td>0.60</td>
<td>-</td>
<td>9.22</td>
<td>27.65</td>
</tr>
</tbody>
</table>

Hokkaido Region

<table>
<thead>
<tr>
<th>Year</th>
<th>Type of fisheries</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>10</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1953</td>
<td>Small trawl other than "Teguri"</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.77</td>
<td>0.77</td>
<td>0.21</td>
<td>37.97</td>
<td>3.26</td>
<td>-</td>
<td>7.30</td>
<td>41.23</td>
<td></td>
</tr>
<tr>
<td>1954</td>
<td>Small sail-trawl.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.27</td>
<td>0.39</td>
<td>0.58</td>
<td>15.52</td>
<td>0.68</td>
<td>29.55</td>
<td>0.91</td>
<td>-</td>
<td>16.88</td>
</tr>
<tr>
<td>1955</td>
<td>Other kind of trawls.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.97</td>
<td>0.26</td>
<td>3.42</td>
<td>16.46</td>
<td>0.89</td>
<td>15.01</td>
<td>0.05</td>
<td>-</td>
<td>5.36</td>
</tr>
<tr>
<td>1956</td>
<td>One-boat purse seine.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.41</td>
<td>0.86</td>
<td>19.68</td>
<td>0.70</td>
<td>10.16</td>
<td>0.59</td>
<td>0.23</td>
<td>3.75</td>
<td>57.99</td>
</tr>
<tr>
<td>1957</td>
<td>Other surrounding nets.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.15</td>
<td>0.35</td>
<td>0.23</td>
<td>15.52</td>
<td>1.74</td>
<td>28.80</td>
<td>1.06</td>
<td>-</td>
<td>3.97</td>
</tr>
<tr>
<td>1958</td>
<td>Other kind of large set net.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.01</td>
<td>0.31</td>
<td>-</td>
<td>13.42</td>
<td>3.02</td>
<td>14.71</td>
<td>0.23</td>
<td>-</td>
<td>4.66</td>
</tr>
<tr>
<td>1959</td>
<td>Other lift nets.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.30</td>
<td>-</td>
<td>14.05</td>
<td>2.84</td>
<td>12.75</td>
<td>1.75</td>
<td>-</td>
<td>4.72</td>
<td>58.34</td>
</tr>
<tr>
<td>1960</td>
<td>Beach-seine.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.01</td>
<td>-</td>
<td>13.83</td>
<td>1.04</td>
<td>5.82</td>
<td>-</td>
<td>-</td>
<td>1.96</td>
<td>76.32</td>
</tr>
<tr>
<td>1961</td>
<td>Boat-seine.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.36</td>
<td>-</td>
<td>15.67</td>
<td>3.28</td>
<td>32.94</td>
<td>0.45</td>
<td>-</td>
<td>6.51</td>
<td>40.76</td>
</tr>
<tr>
<td>1962</td>
<td>Other fisheries.</td>
<td>-</td>
</tr>
</tbody>
</table>

North Pacific Coast Region

<table>
<thead>
<tr>
<th>Year</th>
<th>Type of fisheries</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>10</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1953</td>
<td>Small trawl other than "Teguri"</td>
<td>-</td>
</tr>
<tr>
<td>1954</td>
<td>Small sail-trawl.</td>
<td>-</td>
</tr>
<tr>
<td>1955</td>
<td>Other kind of trawls.</td>
<td>-</td>
</tr>
<tr>
<td>1956</td>
<td>One-boat purse seine.</td>
<td>-</td>
</tr>
<tr>
<td>1957</td>
<td>Other surrounding nets.</td>
<td>-</td>
</tr>
<tr>
<td>1958</td>
<td>Other kind of large set net.</td>
<td>-</td>
</tr>
<tr>
<td>1959</td>
<td>Other lift nets.</td>
<td>-</td>
</tr>
<tr>
<td>1960</td>
<td>Beach-seine.</td>
<td>-</td>
</tr>
<tr>
<td>1961</td>
<td>Boat-seine.</td>
<td>-</td>
</tr>
<tr>
<td>1962</td>
<td>Other fisheries.</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 9. Continued.

<table>
<thead>
<tr>
<th>Region</th>
<th>Type of fisheries</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Year</td>
<td></td>
</tr>
<tr>
<td>East</td>
<td>1953</td>
<td>11.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.54</td>
<td>1.22</td>
<td></td>
<td>9.09</td>
</tr>
<tr>
<td></td>
<td>'54</td>
<td>29.23</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>54.74</td>
<td>2.62</td>
<td></td>
<td>6.35</td>
</tr>
<tr>
<td></td>
<td>'55</td>
<td>19.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>71.16</td>
<td>2.42</td>
<td></td>
<td>6.27</td>
</tr>
<tr>
<td></td>
<td>'56</td>
<td>23.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>65.18</td>
<td>2.89</td>
<td></td>
<td>7.60</td>
</tr>
<tr>
<td>China</td>
<td>'57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>59.35</td>
<td>1.02</td>
<td>0.34</td>
<td>6.78</td>
</tr>
<tr>
<td>Sea</td>
<td>'58</td>
<td>30.33</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>57.92</td>
<td>1.70</td>
<td>0.09</td>
<td>9.24</td>
</tr>
<tr>
<td>Region</td>
<td>'59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>59.44</td>
<td>1.37</td>
<td>0.10</td>
<td>8.68</td>
</tr>
<tr>
<td></td>
<td>'60</td>
<td>34.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48.52</td>
<td>1.71</td>
<td></td>
<td>15.27</td>
</tr>
<tr>
<td></td>
<td>'61</td>
<td>34.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>54.13</td>
<td>1.11</td>
<td>0.14</td>
<td>10.06</td>
</tr>
<tr>
<td></td>
<td>'62</td>
<td>47.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36.16</td>
<td>2.39</td>
<td></td>
<td>12.65</td>
</tr>
</tbody>
</table>

これによると、北海道区では、「その他の小型定置網」が20—57％、「その他のまき網」が0—32％、「船びき網」が6—31％のイカナゴ漁獲割合を示す。太平洋北区では、「その他の漁業」が33—76％、「その他の敷網」が0—42％、「その他の小型定置網」が0—37％を示す。太平洋中区では、「パッチ網」が39—89％；東支那海区では、「船びき網」が31—99％で、ともにその漁区の主要イカナゴ漁獲種類となっている。また瀬戸内海区では、「その他の敷網」が48—76％、「小型機船船底びき網」が11—34％のイカナゴ漁獲割合を示す。

第3項 離海区別の漁業種類別漁獲量

海区ごとのイカナゴ漁業種類別漁獲量を明らかにされたが、これらの漁具漁法で漁獲される魚種のうちで、イカナゴが漁獲される割合（漁獲率）をみると、第10表に示すようになる。これによると、北海道区でイカナゴを最も多く漁獲する「その他の小型定置網」は、その漁獲物の31—62％、平均47.66％がイカナゴで占められ、「その他のまき網」45—97％、平均66.47％；「その他の敷網」2—99％、平均25.09％；「船びき網」47—85％、平均74.11％；「その他の漁業」60—93％、平均83.52％がイカナゴで占められる。太平洋北区では、「その他の漁業」60—90％、平均89.23％；「その他の敷網」6—100％、平均93.37％のイカナゴ漁獲率を示す。太平洋中区では、「パッチ網」6—27％、平均15.44％；「その他の漁業」6—71％、平均42.95％のイカナゴ漁獲率を示し、これらの漁区に比較してイカナゴ漁獲率は概して低い。またこれと同様なことが、日本海北区、日本海西区、東支那海区でも認められる。瀬戸内海区では、「その他の敷網」が65—87％、平均82.27％で、イカナゴ漁獲率が最も大きい。

第5節 単位努力当たり漁獲量

イカナゴ漁獲は、すでに述べたように漁区によってもがった漁業種類によって行なわれるが、魚類水産統計報告では、イカナゴ漁獲以外の漁業種類が多くの漁業種類区分がなされている。また漁区によっては、イカナゴ魚群の数群の存在が見込まれるにかかわらず、統計報告からはこれらの分離はほとんど不可
Table 10. Percentages of sand-lance catch by different types of fishery during years 1953–1962 in the regions.

<table>
<thead>
<tr>
<th>Type of fisheries</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hokkaido Region.</td>
<td>0.0003</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>17.83</td>
<td>72.64</td>
<td>—</td>
<td>66.47</td>
<td>25.09</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>North Pacific R.</td>
<td>0.47</td>
<td>4.56</td>
<td>1.60</td>
<td>—</td>
<td>33.88</td>
<td>5.97</td>
<td>0.17</td>
<td>—</td>
<td>6.06</td>
<td>93.37</td>
<td>0.10</td>
</tr>
<tr>
<td>Middle Pacific R.</td>
<td>—</td>
<td>0.21</td>
<td>—</td>
<td>5.02</td>
<td>—</td>
<td>0.04</td>
<td>—</td>
<td>—</td>
<td>0.60</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>North Japan Sea R.</td>
<td>—</td>
</tr>
<tr>
<td>West Japan Sea R.</td>
<td>—</td>
<td>—</td>
<td>9.64</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>East China Sea R.</td>
<td>—</td>
<td>—</td>
<td>0.69</td>
<td>10.38</td>
<td>10.01</td>
<td>—</td>
<td>0.05</td>
<td>0.03</td>
<td>—</td>
<td>3.53</td>
<td>0.14</td>
</tr>
<tr>
<td>Seto Inland Sea R.</td>
<td>—</td>
<td>3.00</td>
<td>22.00</td>
<td>1.42</td>
<td>—</td>
<td>—</td>
<td>0.26</td>
<td>—</td>
<td>0.07</td>
<td>82.27</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Note: The table provides the percentages of sand-lance catch by different types of fishery during the years 1953–1962 in various regions. The data include: (1) One-boat medium trawl operating east of 130°E, (2) Small trawl "Teguri" type 1, (3) Small trawl other than "Teguri", (4) Small sail-trawl, (5) Other kind of trawls, (6) One-boat purse seine, (7) Two-boat purse seine, (8) Semi-surrounding net, (9) Other surrounding nets, (10) Other lift nets, (11) Other gill nets, (12) Other fisheries.

能に近い。さらに、各海域における漁業種ごとの対象イカナゴ資源の発育段階についての生物学的知見もとぼしい。したがって、これらの資料ではイカナゴ資源の動向を適確に把握することはできない。

そこで筆者らは、海区の代表的なイカナゴ漁業種類だけについて、標準化漁獲量に対する年々のイカナゴ漁獲量、ならびに単位努力当たり漁獲量の推移をうかがうこととした。

農林水産統計報告（1954—1964）にもとづいて、海区別、年別、漁業種別漁獲量、航数から標準化航数および単位努力当たり漁獲量を算出した。

[1] 北海道区イカナゴ資源

さきにも述べたように、北海道区のイカナゴは5群に大別される。北海道区でイカナゴを最も多く漁獲する漁業種類は「その他的小型定置網」で、イカナゴ漁獲率は年により異なるのが北海道区全体の20—57%に達する。

第8回は、北海道区ならびに太平洋近区における「その他的小型定置網」の延航航数と、イカナゴ漁獲量を示す。
Fig. 8. Annual changes of the number of trips and the sand-lance catch on the fishing type of "Other kind of small set net" in Hokkaido and North Pacific Region, during the period of ten years (1953-1962). Solid lines, number of trips; broken lines, sand-lance catch; solid circles, Hokkaido Region; soft circles, North Pacific Region.

Fig. 9. Relation between the standardized number of trips and the sand-lance catch per unit effort of the fishing type of "Other kind of small set net" in Hokkaido Region based on the same assumption as shown in Table 15.
かも、近年ほど航海数が増加し、单位努力当たり漁獲量が減少する傾向がみられる。第10図は、「その他の漁網」第11図は、「船びき網」の経年航海数とイカナゴ漁獲量を示す。

北海道区のばあい、「その他の漁網」では漁獲物の77～99%がイカナゴで占められ（ただし、1953年2.21%、1956年32.9%）、延航海数の経年変化は1953年には大きい、Fig. 10. Annual changes of the number of trips and the sand-lance catch of the fishing type of “Other lift nets” in Hokkaido, North Pacific and Seto Inland Sea Region, during the period of ten years (1953-1962). Solid lines, number of trips; broken lines, catch in tons.
Remarks : ●, ○...Hokkaido R.
○, ◦...North Pacific R.
△, ◻...Seto Inland Sea R.

が、その他の年では10,000回以下で、漁獲量は1954～1955年および1961～1962年に大きいが、2,000tonをわずかに回わるに過ぎない。また船びき網の漁獲组成は、17.0～45.7%がイカナゴで占められる。第11図から北海道区の船びき網の経年変化をみると、延航海数は年々幾分減少の傾向を示し、イカナゴ漁獲量は5,000ton前後で、1961～1962年には2,000tonに急減した。

また第12図は「その他の漁網」;第13図は船びき網について、0～5ton階層を基準として標準化した航海数と、1航海当たりのイカナゴ漁獲量を示したものである。

これらによると、「その他の漁網」では年々の漁獲量変動の幅は広く、「船びき網」では、「その他の小型定置網」に似た変動を示す。イカナゴをおもな

Fig. 11. Annual changes of the number of trips and the sand-lance catch of the fishing type of “Boat seine” in Hokkaido, North or Middle Pacific, Seto Inland Sea and East China Sea Region, during the period of ten years (1953-1962). Solid lines, number of trips; broken lines, catch in tons.
Remarks : ●, ○...Hokkaido R.
○, ◦...North Pacific R.
△, ◻...Middle Pacific R.
△, ◻...Seto Inland Sea R.
+; ◻...East China Sea R.
Fig. 12. Relation between the standardized number of trips and the sand-lance catch per unit effort of the fishing type of “Other lift nets” in Hokkaido Region, based on the same assumption as shown in Table 15.

Fig. 13. Relation between the standardized number of trips and the sand-lance catch per unit effort of the fishing type of “Boat seine” in Hokkaido Region, based on the same assumption as shown in Table 15.

漁獲対象とする「その他の散網」の標準化航海水数と、1航海当たりのイカナゴ漁獲量とは年々大きい変動を示す。

[2] 太平洋北区イカナゴ資源

太平洋北区のイカナゴは、漁況変動の相関から判断すると、北海道区の日本海側に連なる青森群と、岩手・宮城群の2つの群に分けられよう。

太平洋北区でイカナゴを最も多く漁獲する漁業種類は、「その他の漁業」で太平洋北区イカナゴ総漁獲量の33—58％に達する。またこの漁業によって漁獲される魚類の21—67％はイカナゴで占められる。

第14図は、「その他の漁業」の延航海水数およびイカナゴ漁獲量の経年変化を示す。

— 22 —
Fig. 14. Annual changes of the number of trips and the sand-lance catch of the fishing type of "Other fisheries" in Hokkaido and North or Middle Pacific Region, during the period of ten years (1953–1962). Solid lines, number of trips; broken lines, catch in tons.

Remarks: ●, ○—Hokkaido R. ○, ⨄—North Pacific R. △, ●—Middle Pacific R.

これによると太平洋北区では、「その他の漁業」の航海数は年々増加し、イカナゴ漁獲量もこれに正比例して増加し、1961年は極大値を示した。

第15図は、「その他の漁業」について0—5 ton/狀層を基準として標準化した航海数と、1航海当たりのイカナゴ漁獲量との関係を示す。

Fig. 15. Relation between the standardized number of trips and the sand-lance catch per unit effort of the fishing type of "Other fisheries" in North Pacific Region, based on the same assumption as shown in Table 15.
これによると，1956年以降では航海数と漁獲量とは1954，'55，'61年を除くとほぼ逆相関を示す。
つぎに，「その他の敷網」では，1954年の7.1％を除くとイカナゴ漁獲率は60ー100％で，イカナゴの漁獲割合が大きい。第10図によれば太平洋北区では，この漁業の延航数は年々増加の傾向を示し，イカナゴ漁獲量も増加の傾向が顕著である。

第16図は，太平洋北区の「その他の敷網」について，0〜5 ton階層を基準として標準化した航海数と1航海当たりのイカナゴ漁獲量との関係を示す。これによると「その他の敷網」でも，標準化航海数と1航海当たりの漁獲量との関係は「その他の漁業」におけると同様，両者はほぼ逆相関を示す。
さらに，「その他の小型定置」および船びき網のイカナゴ漁獲率は，それぞれ1〜42％，13〜46％で，第8，11図に示す通り，延航数は，「その他の小型定置」では，1953年以外は，ほぼ11〜12×10^4回で安定した状態を示し，船びき網では，年々減少する。漁獲量は，「その他の小型定置」で，1957，1962年の激激な増加を除くと，年々2,000ton程度とみなされ，船びき網では1,000tonを下回る。
第17図は，「その他の小型定置」について，1〜9人を基準とし，第18図は，船びき網について，0〜5 ton階層を基準として標準化した航海数と1航海当たりのイカナゴ漁獲量との関係を示す。

Fig. 16. Relation between the standardized number of trips and the sand-lance catch per unit effort of the fishing type of "Other lift nets" in North Pacific Region, based on the same assumption as shown in Table 15.

Fig. 17. Relation between the standardized number of trips and the sand-lance catch per unit effort of the fishing type of "Other kind of small set net" in North Pacific Region, based on the same assumption as shown in Table 15.
Fig. 18. Relation between the standardized number of trips and the sand-lance catch per unit effort of the fishing type of "Boat seine" in North Pacific Region, based on the same assumption as shown in Table 15.

Fig. 19. Annual changes of the number of trips and the sand-lance catch of the fishing type of "Pacchi-ami" in Middle Pacific Region, during years 1953-1962. Solid line, number of trips; broken line, catch in tons.

Fig. 20. Relation between the standardized number of trips and the sand-lance catch per unit effort of the fishing type of "Pacchi-ami" in Middle Pacific Region, based on the same assumption as shown in Table 15.

Fig. 21. Relation between the standardized number of trips and the sand-lance catch per unit effort of the fishing type of "Boat seine" in Middle Pacific Region, based on the same assumption as shown in Table 15.

これによると、「その他の小型定置」では、標準化航海数と単位努力当たり漁獲量との相関は明かではないが、船びき網では、さきの「その他の漁業」、「その他の敷網」のほぼ同様に、両者の関係は逆相関を示す。

[3] 太平洋区イカナゴ資源

太平洋中区では、イカナゴの39〜89％がバッチ網で漁獲される。第19図は、バッチ網について毎航海数とイカナゴ漁獲量との経年変化を示す。バッチ網のイカナゴ漁獲率は、4〜21％でかなり低い。第19図によると、バッチ網の航海数は1958〜1959年に小さく、1955、1961年に大きい。また漁獲量は、1956年と1961年に山がみられる。また、第11図に示した太平洋中区の船びき網では、総航海数は50,000〜60,000回で変化は小さいがイカナゴ漁獲量は、年による変動が大きく、1953、1957年に山：1954〜1956年に谷を示す。第20図は、5〜10ton階層を基準として標準化したバッチ網；第21図は、0〜5ton階層を基準として標準化した船びき網の各標準化航海数と1航海当たりのイカナゴ漁獲量との関係を示したものである。

これらによると、標準化航海数と1航海当たりのイカナゴ漁獲量とは、逆相関を示す。

[4] 東支那海区イカナゴ資源

東支那海区では、イカナゴ漁獲量の81〜99％が船びき網で漁獲される。船びき網のイカナゴ漁獲率は2〜
29％であるが、第11図によって東支那海区の船 blij網の航海数とイカナゴ漁獲量との経年変化をみると、航海数は1958年以降減少傾向を示し、イカナゴ漁獲量も1956年をピークとし徐々に減少する。

第22図は、船 blij網について0～5 ton 階層を基準として標準化した総航海数と1航海当たりのイカナゴ漁獲量との関係を図示したものである。

これによると、東支那海区のイカナゴは、漁獲努力が増加しても単位漁獲量の変動は小さい。

【5】瀬戸内海区イカナゴ資源
瀬戸内海区では、イカナゴ漁獲量の48～76％が「その他の敷網」で漁獲される。「その他の敷網」のイカナゴ混獲率は65～87％で、この漁業では、イカナゴを漁獲対象とするもののがかなり多く含まれる。第10図から瀬戸内海区では、「その他の敷網」の延航航海数の経年変化は1958年以降減少の傾向を示し、イカナゴ漁獲量も1961年以降漁業以外では、幾分減少傾向がうかがわれる。

つぎに小型機船 blij網（その他の縦び網）は、瀬戸内海の漁獲イカナゴの13～47％を占め、またそのイカナゴ漁獲率は、4～16％を示す。

第23図は、小型機船 blij網（その他の縦び網）の延航航海数とイカナゴ漁獲量との経年変化を示す。

これによると、航海数、漁獲量ともに年々増加の傾向がうかがわれる。

第24図は「その他の敷網」について、0～5 ton 階層を基準として標準化した総航海数と1航海当たりのイカナゴ漁獲量との関係を示す。これによると両者の関係は他地区の漁獲状況と異なり、単位努力当たりの漁獲量は航海数に正比例する。これを1958年以降の航海数の減少傾向と併せ考えると、瀬戸内海の「その他
の数値は、質的な観察に立っているので、挙げた数値に一致する。最近に至る現象は、観察魚体の変化である。市の他の数値のうち、代表的なものは魚体と魚塊期。幼魚期と生産効率を用いて成立の漁業種である。現在は、栄養と大型魚を含む漁獲の大半が、加工され、新鮮または出荷されとして使用された。しかし、最近では化学調味料の進出によっ
り、比較的大型魚の捕獲は、安価な養魚用飼料以外に望めなくなってきたので、強い影響を受けるようになった。このためイカナゴ漁業は、商品価値の高い小型魚の干製品を主観に操業されるようになった。

第6節 広島県下におけるイカナゴ漁業

第1項 漁獲量、漁期、漁業種類
ここでは、広島県農林水産統計資料（1952—1963）によって、イカナゴ漁業の特性を追求することとした。

【1】漁獲量
第11表は、広島県水産物漁獲統計によるイカナゴ漁獲量の年別、月別変動を示す。

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1952</td>
<td>6.8</td>
<td>6.5</td>
<td>7.9</td>
<td>184.3</td>
<td>70.6</td>
<td>48.6</td>
<td>0.8</td>
<td>0.7</td>
<td>7.0</td>
<td>4.6</td>
<td>337.7</td>
</tr>
<tr>
<td>'53</td>
<td>4.5</td>
<td>13.9</td>
<td>308.3</td>
<td>87.0</td>
<td>86.6</td>
<td>33.4</td>
<td>12.8</td>
<td>—</td>
<td>1.1</td>
<td>6.4</td>
<td>555.4</td>
</tr>
<tr>
<td>'54</td>
<td>3.8</td>
<td>1.5</td>
<td>228.8</td>
<td>61.5</td>
<td>88.5</td>
<td>39.4</td>
<td>2.3</td>
<td>—</td>
<td>6.0</td>
<td>10.5</td>
<td>444.0</td>
</tr>
<tr>
<td>'55</td>
<td>3.8</td>
<td>45.4</td>
<td>202.1</td>
<td>73.1</td>
<td>53.3</td>
<td>24.8</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>403.5</td>
</tr>
<tr>
<td>'56</td>
<td>15.0</td>
<td>15.0</td>
<td>138.8</td>
<td>71.3</td>
<td>37.5</td>
<td>11.3</td>
<td>—</td>
<td>—</td>
<td>1.1</td>
<td>7.5</td>
<td>307.9</td>
</tr>
<tr>
<td>'57</td>
<td>0.4</td>
<td>2.6</td>
<td>352.9</td>
<td>57.0</td>
<td>36.8</td>
<td>23.6</td>
<td>2.6</td>
<td>0.8</td>
<td>—</td>
<td>0.4</td>
<td>478.1</td>
</tr>
<tr>
<td>'58</td>
<td>2.1</td>
<td>2.3</td>
<td>327.0</td>
<td>150.9</td>
<td>72.5</td>
<td>9.2</td>
<td>1.9</td>
<td>—</td>
<td>—</td>
<td>0.3</td>
<td>566.1</td>
</tr>
<tr>
<td>'59</td>
<td>—</td>
<td>4.8</td>
<td>614.7</td>
<td>121.5</td>
<td>86.5</td>
<td>150.5</td>
<td>5.0</td>
<td>—</td>
<td>1.3</td>
<td>984.6</td>
<td></td>
</tr>
<tr>
<td>'60</td>
<td>0.3</td>
<td>10.1</td>
<td>397.8</td>
<td>162.3</td>
<td>46.7</td>
<td>114.5</td>
<td>38.2</td>
<td>—</td>
<td>6.5</td>
<td>776.8</td>
<td></td>
</tr>
<tr>
<td>'61</td>
<td>22.6</td>
<td>12.8</td>
<td>456.8</td>
<td>79.7</td>
<td>44.3</td>
<td>45.7</td>
<td>10.6</td>
<td>—</td>
<td>—</td>
<td>672.8</td>
<td></td>
</tr>
<tr>
<td>'62</td>
<td>23.7</td>
<td>12.4</td>
<td>234.3</td>
<td>63.8</td>
<td>31.0</td>
<td>15.5</td>
<td>—</td>
<td>2.4</td>
<td>2.7</td>
<td>2.7</td>
<td>388.8</td>
</tr>
<tr>
<td>'63</td>
<td>6.5</td>
<td>6.1</td>
<td>432.6</td>
<td>101.6</td>
<td>19.3</td>
<td>14.4</td>
<td>7.1</td>
<td>4.2</td>
<td>—</td>
<td>—</td>
<td>592.2</td>
</tr>
</tbody>
</table>

これによると、1952年から1963年までのイカナゴ漁獲量は、1953年、1959年にそれぞれ極大を示し、1956、1962年に極小を示す。第25図は、イカナゴ漁獲量の経年変化と3月、4月のイカナゴ袋網網漁獲量の経年変化を示す。この図からも、さらに述べたことが理解されよう。
Table 12. Annual changes of the sand-lance catch and its percentage to the total fish catch landed at main fisheries co-operative associations in Hiroshima Prefecture during years 1955–1963.

<table>
<thead>
<tr>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1955</td>
<td>6.4</td>
<td>104.3</td>
<td>60.8</td>
<td>203.3</td>
<td>28.7</td>
<td>403.5</td>
</tr>
<tr>
<td>'56</td>
<td>16.9</td>
<td>75.0</td>
<td>75.8</td>
<td>137.3</td>
<td>2.9</td>
<td>307.9</td>
</tr>
<tr>
<td>'57</td>
<td>4.9</td>
<td>95.3</td>
<td>76.9</td>
<td>300.0</td>
<td>1.0</td>
<td>478.1</td>
</tr>
<tr>
<td>'58</td>
<td>26.0</td>
<td>78.1</td>
<td>58.0</td>
<td>341.3</td>
<td>62.7</td>
<td>566.1</td>
</tr>
<tr>
<td>'59</td>
<td>15.1</td>
<td>270.7</td>
<td>27.6</td>
<td>517.9</td>
<td>153.3</td>
<td>984.6</td>
</tr>
<tr>
<td>'60</td>
<td>18.0</td>
<td>184.8</td>
<td>14.5</td>
<td>461.2</td>
<td>98.3</td>
<td>776.8</td>
</tr>
<tr>
<td>'61</td>
<td>7.0</td>
<td>110.0</td>
<td>72.2</td>
<td>470.4</td>
<td>13.2</td>
<td>672.8</td>
</tr>
<tr>
<td>'62</td>
<td>10.6</td>
<td>73.8</td>
<td>42.4</td>
<td>253.8</td>
<td>8.2</td>
<td>388.8</td>
</tr>
<tr>
<td>'63</td>
<td>4.9</td>
<td>66.8</td>
<td>11.6</td>
<td>507.6</td>
<td>1.1</td>
<td>592.2</td>
</tr>
</tbody>
</table>

Fig. 25. Yearly fluctuations of the total sand-lance catch and the catch of the fishing type of "Hoop net" from March to April, during years 1952–1963 in Hiroshima Prefecture. Solid line, total catch; broken lines, catch by "Hoop net".

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1952</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'55</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>'56</td>
<td></td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>'57</td>
<td>0.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>'58</td>
<td>0.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>'59</td>
<td>0.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>'60</td>
<td>0.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>'61</td>
<td>0.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>'62</td>
<td>0.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>'63</td>
<td>0.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Fig. 26. Annual variation of percentage of the sand-lance catch to the total fish catch in Hiroshima Prefecture during years 1952–1963.

第12表は、広島県の主要産地別漁獲量と、その百分率を示したもので、これによって
福山市産地は、広島県イカナゴ漁獲量の44－70%を漁獲することがわかる。

第26図は、全魚類漁獲量に対するイカナゴ漁獲量の百分率を示したもので、イカナゴ漁獲量が増加したことが示される。

〔2〕漁期

第11表について、年々の月別漁獲量の大きい月に注目し

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1952</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'55</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>'56</td>
<td></td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>'57</td>
<td>0.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>'58</td>
<td>0.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>'59</td>
<td>0.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>'60</td>
<td>0.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>'61</td>
<td>0.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>'62</td>
<td>0.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>'63</td>
<td>0.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
</tr>
</tbody>
</table>
て、第1位から第4位までの順位にしたがい、第1位に4、第2位に3、第3位に2、第4位に1の指数を与えて集計すると、第13表がえられる。

第13表によると、広島県の漁期は3月最盛期とし、他海区より幾分早目であるといえる。

【3】漁業種類

第14表は、イカナゴ漁業種類別に年にイカナゴ漁獲量を示したものである。

Table 14. Annual changes of the sand-lance catch by the fishing gears in Hiroshima Prefecture. Unit : ton.
1. Total catch.
2. Hoop net.
3. Other kind of set nets.
4. Beach seine.
5. Boat seine (Anchovy).
6. Other kind of boat seine.
7. Other fisheries.

<table>
<thead>
<tr>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1952</td>
<td>337,7119.8</td>
<td>9.5</td>
<td>8.8</td>
<td>—</td>
<td>74.7</td>
<td>24.9</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>30.48</td>
<td>2.82</td>
<td>2.07</td>
<td>—</td>
<td>71.51</td>
<td>7.57</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>554,6363.4</td>
<td>1.9</td>
<td>5.6</td>
<td>52.5</td>
<td>17.4</td>
<td>13.9</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>403,6356.6</td>
<td>6.8</td>
<td>—</td>
<td>68.3</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>307.9</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>477,4380.6</td>
<td>—</td>
<td>0.4</td>
<td>96.4</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>566,4101.3</td>
<td>—</td>
<td>26.3</td>
<td>87.2</td>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>598,4651.2</td>
<td>—</td>
<td>0.6</td>
<td>93.4</td>
<td>13.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>625.7</td>
<td>—</td>
<td>0.2</td>
<td>39.9</td>
<td>24.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>672,8549.5</td>
<td>—</td>
<td>2.9</td>
<td>117.0</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>77.5</td>
<td>—</td>
<td>0.1</td>
<td>17.3</td>
<td>0.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>388,8302.3</td>
<td>—</td>
<td>1.3</td>
<td>73.5</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>77.5</td>
<td>—</td>
<td>0.1</td>
<td>39.9</td>
<td>0.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>592,2524.2</td>
<td>—</td>
<td>0.7</td>
<td>40.0</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>88.52</td>
<td>—</td>
<td>0.1</td>
<td>6.75</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

これによると、イカナゴ漁獲量は「イカナゴ袋待網」が50%以上を占め、その他の船持ち網がこれにつく。袋待網について、漁業組合別漁獲量を示すと、第15表のようにある。これによると、袋待網を使用するのは、大崎下島、吉和、石島の3漁業協同組合で、特に石島がその大半を占める。なお、これら漁具の詳細は、「瀬戸内海の漁業」(1951)に記載されている。

Table 15. Yearly changes of the number of operations of “Hoop net” and the annual sand-lance catch in Hiroshima Prefecture.
Unit : ton.
1. Otsuka-shimosaika.
2. Yoshiwa. 3. Hashiri-jima.

<table>
<thead>
<tr>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. Catch</td>
<td>No. Catch</td>
<td>No. Catch</td>
<td></td>
</tr>
<tr>
<td>1953</td>
<td>56.3</td>
<td>9</td>
<td>318.5</td>
</tr>
<tr>
<td>54</td>
<td>63</td>
<td>98</td>
<td>225.0</td>
</tr>
<tr>
<td>55</td>
<td>70.5</td>
<td>122</td>
<td>137.3</td>
</tr>
<tr>
<td>56</td>
<td>71.6</td>
<td>123</td>
<td>300.0</td>
</tr>
<tr>
<td>57</td>
<td>67.6</td>
<td>129</td>
<td>341.3</td>
</tr>
<tr>
<td>58</td>
<td>29.5</td>
<td>129</td>
<td>517.9</td>
</tr>
<tr>
<td>59</td>
<td>14.7</td>
<td>131</td>
<td>461.2</td>
</tr>
<tr>
<td>60</td>
<td>73.0</td>
<td>123</td>
<td>470.4</td>
</tr>
<tr>
<td>61</td>
<td>42.4</td>
<td>126</td>
<td>253.8</td>
</tr>
<tr>
<td>62</td>
<td>12.0</td>
<td>122</td>
<td>507.6</td>
</tr>
</tbody>
</table>

第2項 イカナゴ袋待網漁業

広島県におけるイカナゴ漁業の主要なものは「袋待網」で、これを使用する組合は3組合であることが判明したが、さらに本漁業について考察を加えさせてみよう。

袋待網は、盛漁網、こみし網または、こみ網ともいわれ、袋を水中に沈設して流れゆく魚類が、袋網に入ると引き揚げ漁獲するが、兵庫県弁本では、ベッタ網ともいう。これは本漁業が不安定なことを意味するととも、あるいは、魚類が入網する間、船上でとばくをするためともいわれる。

「瀬戸内海の漁業」(1951)によると、イカナゴの成魚は夜間底生生活を営んでいるが、稚魚、幼魚の時代には深海にない遊泳生活を営み、かつ遊泳力が弱いので潮流によって流される。この性質を利用して適当な場所に漁具を設置し、流れゆくイカナゴを待ちかけることにより大量に漁獲することができるのである。
Table 16. Relationship between the daily sand-lance catch of the fishing type of "Hoop net" and the phases of the moon, observed from January to June in 1954, 1956-1959. Unit: kan.

|-------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|

- Table continues with data for each day of the month.
瀬戸内海は、その名の通り瀬戸が多く、好適な場所に思われているので、この漁法が良く発達し、現在イカナゴを目的とする漁業としては、最も重要な漁法となっていると述べている。

【A】イカナゴ袋待網漁獲量と潮汐ならびに潮流との関係

宮﨑（1960）は、イカナゴ袋待網について、一般に潮流の早い所で使用する漁具は小型で、潮流の緩慢な所で使用するものは大型であると述べた。したがって漁具の構造は、漁場の潮流いかんにより異なるものと推察される。また同氏によると、イカナゴ袋待網は、(1)網面、(2)網眼、(3)浮筋、(4)沈子に大別されるが、イカナゴの漁獲性能に最も影響するものは、網面の長さと、網眼の周囲の長さとの比であり、この値が3.0くらいが適当であるという。さらに、本漁業のイカナゴ漁獲量と潮汐および潮流との関係について、一覧的に大潮時が漁獲量が多く、小潮時には少ないと述べた。すなわち、大潮時においては、月令10日、14日より1〜3日目に漁獲が多く、小潮時には、月令7日、22日後1〜3日目に漁獲量が少ない。ただし漁期の初めには、イカナゴが小さく自力の遊泳力が小さいから、小潮時でも、漁獲にさほど差はみられないが、イカナゴが成長するにつれて遊泳力を増すので、潮流に流されることが漸次少なくなり、漁期の終わりごろの小潮時には、ほとんど操業ができない状態となる。これに反して、大潮時において操業をみるとあるのは以上のようなことが原因しているという。

第16表は、イカナゴ袋待網について、尾道市吉田町町谷米の日々のイカナゴ漁獲量を示す。また第16表を年別に示すと第27図（1〜5）のようになる。ここで注意を要することは、漁獲イカナゴの年令組成が1958、1959年を除くと不明で特に吉田漁業協同組合にあい、稚魚を漁獲するのは例年4月中旬以降で、他の漁場と異なり遊泳力の大きいものを漁獲対象とする。

Fig. 27. (1〜5). Relation between the daily sand-lance catch of the fishing type of "Hoop net" and the phases of the moon.

—31—
1957

Fig. 27. (2～4).

1958

--- 0 year fish
--- 1 year fish
第27図によって、イカナギ漁獲量と潮汐との関係をみると、漁獲量は1954年では特に望の前後に大きく、下弦または上弦の前後には小さい。1956年では、漁獲量の大小と潮汐との関係は明らかでない。また1957年、1958年では、1954年と同様に、漁獲量は朝または夕の前後に大きく、下弦または上弦の前後に小さいが、1959年では、これらの関係は明らかでない。しかしながら、イカナギ漁獲量は小型漁網で、潮流を受けて漁獲する漁業であるから、潮流の早い方が望ましいことは当然のように思われる。宮崎（1960）は、潮流の早さとイカナギ漁獲網による漁獲量との関係について、第28図に示すように流速は、毎時1〜2浬が適当であると述べた。漁獲状況の観察結果から推論すると、イカナギ漁獲網は、主として底生生活に移行する前の稚魚を漁獲対象にするもので、当然、潮汐流と密接な関係をもつ。しかし他方、漁具設置の技術と魚道の位置によって、個人差が大きいことも考慮できない。また漁場がかなり劣悪されているため日々の漁具設置場所が個々に指定され、かなり制約を受ける実状にあり、1個人の漁獲量だけでは潮汐と漁獲量との関係が判然としない難いように思われる。

【B】イカナギ漁獲網漁場

漁獲網漁場は宮崎（1960）によると、沿岸5〜30浬までの海域で、特に潮流の急流のある所が好漁場である。これらの漁場を地勢的にみると、主流漁場とわが潮漁場とに分けられる。主流漁場は、高潮両流の本流の通るところで、わが潮漁場は、海底の起伏や陸地の突出によって主流の一部が渦流のごとく状態となって

Fig. 27. (5).

Fig. 28. Relation between the daily sand-lance catch and the velocity of tidal current (based on the data by T. Miyazaki).

Fig. 29. Diagramatic representation of the fishing grounds where the fishing type "Hoop net" operates (based on the data by T. Miyazaki).

ら。これらの漁場を地勢的にみると、主流漁場とわが潮漁場とに分けられる。主流漁場は、高潮両流の本流の通るところで、わが潮漁場は、海底の起伏や陸地の突出によって主流の一部が渦流のごとく状態となって
Table 17. Yearly changes of the average sand-lance catch per haul of the fishing type of “Hoop net” operated in the coastal areas of Osaki-shimojima, Yoshiwa, and Hashiri-jima during years 1953-1963. Unit: ton.

<table>
<thead>
<tr>
<th>Year</th>
<th>Osaki-shimojima</th>
<th>Yoshiwa</th>
<th>Hashiri-jima</th>
</tr>
</thead>
<tbody>
<tr>
<td>1953</td>
<td>0.0</td>
<td>7.04</td>
<td>5.40</td>
</tr>
<tr>
<td>1954</td>
<td>2.45</td>
<td>22.25</td>
<td>2.30</td>
</tr>
<tr>
<td>1955</td>
<td>1.10</td>
<td>7.83</td>
<td>2.09</td>
</tr>
<tr>
<td>1956</td>
<td>11.60</td>
<td>10.87</td>
<td>1.13</td>
</tr>
<tr>
<td>1957</td>
<td>6.00</td>
<td>12.93</td>
<td>2.44</td>
</tr>
<tr>
<td>1958</td>
<td>11.10</td>
<td>12.12</td>
<td>2.65</td>
</tr>
<tr>
<td>1959</td>
<td>8.50</td>
<td>9.83</td>
<td>4.01</td>
</tr>
<tr>
<td>1960</td>
<td>10.30</td>
<td>7.35</td>
<td>3.52</td>
</tr>
<tr>
<td>1961</td>
<td>7.00</td>
<td>36.50</td>
<td>3.82</td>
</tr>
<tr>
<td>1962</td>
<td>6.60</td>
<td>21.20</td>
<td>2.01</td>
</tr>
<tr>
<td>1963</td>
<td>5.10</td>
<td>12.00</td>
<td>4.16</td>
</tr>
</tbody>
</table>

Fig. 30. Yearly changes of the average sand-lance catch per haul of the fishing type of “Hoop net” at the off shore of Osaki-shimojima, Yoshiwa and Hashiri-shima in Hiroshima Prefecture during years 1953-1963.
×, Osaki-shimojima; ○, Yoshiwa; ●, Hashiri-shima.

第30図によると、イカナゴ袋得網1魚当たり漁獲量は吉和が最も大きく、大崎下島、走島の順に減少する。また年々の平均漁獲量は、1953—1955年大崎下島：1954年、1961年の吉和以外では変動が小さい。それに次ぐのがイカナゴ袋得網着業統数の増減傾向は、1魚当たり漁獲量の小さい走島で増加し、逆に漁獲量の大きい吉和で減少する。第18表は、イカナゴ袋得網漁業について、年々の月別漁獲数と漁獲量とを示す。

第18表は、イカナゴ袋得網の捕獲数をみると、3月が圧倒的に大きく、4月がこれにつづく。第19表は、第18表から1魚当たりの漁獲量を求めたもので、この表について年々の1魚当たり漁獲量の大きいものから順位をつけて、第1位から第4位までに、それぞれ4から1までの指数を与えて集計すると第20表のようになる。
Table 18. Yearly changes of the number of trips and the sand-lance catch of the fishing type of "Hoop net" in Hiroshima Prefecture from January to July during the period of 12 years (1952-1963). The right side, catch in tons; the left side, number of trips.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1952</td>
<td>—</td>
<td>— 0.3</td>
<td>— 0.7</td>
<td>— 113.5</td>
<td>— 5.3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'53</td>
<td>—</td>
<td>— 152</td>
<td>— 6.8</td>
<td>— 1389</td>
<td>— 176</td>
<td>— 35</td>
<td>—</td>
</tr>
<tr>
<td>'54</td>
<td>—</td>
<td>— —</td>
<td>— 2577</td>
<td>— 225.8</td>
<td>— 204</td>
<td>— —</td>
<td>—</td>
</tr>
<tr>
<td>'55</td>
<td>—</td>
<td>— 344</td>
<td>— 42.8</td>
<td>— 2391</td>
<td>— 227</td>
<td>— 18.0</td>
<td>— 225</td>
</tr>
<tr>
<td>'56</td>
<td>— 3.4</td>
<td>— 42.8</td>
<td>— 2391</td>
<td>— 184.9</td>
<td>— 227</td>
<td>— 18.0</td>
<td>— 225</td>
</tr>
<tr>
<td>'57</td>
<td>— 15</td>
<td>— 3.8</td>
<td>— 127.5</td>
<td>— 143</td>
<td>— 31.5</td>
<td>— 175</td>
<td>— 18.0</td>
</tr>
<tr>
<td>'58</td>
<td>— —</td>
<td>— 42.8</td>
<td>— 127.5</td>
<td>— 143</td>
<td>— 31.5</td>
<td>— 175</td>
<td>— 18.0</td>
</tr>
<tr>
<td>'59</td>
<td>— 640</td>
<td>— 42.8</td>
<td>— 1943</td>
<td>— 331.5</td>
<td>— 143</td>
<td>— 31.5</td>
<td>— 18.0</td>
</tr>
<tr>
<td>'60</td>
<td>— 282</td>
<td>— 42.8</td>
<td>— 4049</td>
<td>— 319.1</td>
<td>— 143</td>
<td>— 31.5</td>
<td>— 18.0</td>
</tr>
<tr>
<td>'61</td>
<td>— —</td>
<td>— 42.8</td>
<td>— 4049</td>
<td>— 319.1</td>
<td>— 143</td>
<td>— 31.5</td>
<td>— 18.0</td>
</tr>
<tr>
<td>'62</td>
<td>— —</td>
<td>— 42.8</td>
<td>— 4049</td>
<td>— 319.1</td>
<td>— 143</td>
<td>— 31.5</td>
<td>— 18.0</td>
</tr>
<tr>
<td>'63</td>
<td>— —</td>
<td>— 42.8</td>
<td>— 4049</td>
<td>— 319.1</td>
<td>— 143</td>
<td>— 31.5</td>
<td>— 18.0</td>
</tr>
</tbody>
</table>

Table 19. Yearly changes of the sand-lance catch per haul of the fishing type of "Hoop net" in Hiroshima Prefecture from January to July during years 1953-1963. Unit: ton.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1953</td>
<td>0.035</td>
<td>0.227</td>
<td>0.151</td>
<td>0.123</td>
<td>0.060</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'54</td>
<td>—</td>
<td>0.088</td>
<td>0.189</td>
<td>0.500</td>
<td>0.219</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'55</td>
<td>0.124</td>
<td>0.075</td>
<td>0.073</td>
<td>0.090</td>
<td>0.054</td>
<td>0.250</td>
<td>—</td>
</tr>
<tr>
<td>'56</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'57</td>
<td>0.100</td>
<td>0.171</td>
<td>0.220</td>
<td>0.103</td>
<td>0.022</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'58</td>
<td>—</td>
<td>0.079</td>
<td>0.049</td>
<td>0.148</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'59</td>
<td>0.003</td>
<td>0.149</td>
<td>0.034</td>
<td>0.129</td>
<td>0.100</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'60</td>
<td>0.029</td>
<td>0.094</td>
<td>0.155</td>
<td>0.194</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'61</td>
<td>—</td>
<td>0.150</td>
<td>0.042</td>
<td>0.454</td>
<td>1.123</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'62</td>
<td>—</td>
<td>0.087</td>
<td>0.053</td>
<td>0.193</td>
<td>0.350</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'63</td>
<td>0.143</td>
<td>0.049</td>
<td>0.150</td>
<td>0.200</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 20. Annual changes of the catch index per haul of the fishing type of "Hoop net" in Hiroshima Prefecture from January to July, 1953-1963.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1953</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'54</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'55</td>
<td>3</td>
<td>—</td>
<td>1</td>
<td>2</td>
<td>—</td>
<td>4</td>
<td>—</td>
</tr>
<tr>
<td>'56</td>
<td>3</td>
<td>—</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'57</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'58</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'59</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'60</td>
<td>—</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'61</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'62</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'63</td>
<td>5</td>
<td>22</td>
<td>18</td>
<td>29</td>
<td>18</td>
<td>4</td>
<td>—</td>
</tr>
</tbody>
</table>

第20表から、1航海当たりの漁獲量は5月に最も大きく、3月、4月がこれにつくることがわかる。
イカノガ袋帷の大半が走島で操業される事は前述の通りであるが、走島におけるイカノガ袋帷網の漁期は3月初旬から4月中旬までで、もっぱらイカノガ稚魚を漁獲し、4月下旬には冷網漁業に転換する。一方吉和では、さきに示したように10月ごろから翌年6月初旬ごろまで操業され、走島の盛漁期に当たる3月
の漁獲イカナゴには、イカナゴ稚魚はほとんど漁獲されていない。すなわち、走島ではもっぱらイカナゴ稚魚を漁獲対象とするが、吉和では4月よりやく稚魚の漁獲が始まる。このことが吉和では袋持網1統当たりの漁獲数は走島よりも大きいにもかかわらず漁獲が低く、本漁業不振の主因をなしている。なお稚魚の分布については、第3章に述べる。

【D】イカナゴ袋持網漁業の単位努力当たり漁獲量

広島県農林水産統計資料（1953—1963）による累年のイカナゴ袋持網漁業の航海数と漁獲量に基づき0～3 ton 階層を基準とした標準化航海数と1航海当たりの漁獲量を算出した。これによって標準化航海数と1標準化航海数当たりの漁獲量との関係を示したのが第31図である。

これによると、標準化航海数と1標準化航海数当たり漁獲量との関係は逆相関を示す。また航海数とイカナゴ漁獲量の経年変化を第32図に示す。

第3項 イカナゴ袋持網漁獲量と環境要因

（1）水温

イカナゴの適温は、産卵期水温の低い年は豊漁で、反対に高い年は不漁といわれる。また前述に述べるように、室内実験によってイカナゴ卵の孵化率は、水温8℃前後で最高率を示すことを確かめた。

第31図によると、1954—1956、1962年の1航海当たり漁獲量は、その他の年に比較して少ないことを示している。走島および吉和のイカナゴ袋持網で漁獲されるイカナゴは、後述のように脊椎骨数63にモードをもつ三原水道および瀬戸西海域に発生する魚群である。したがって、ここに対する環境は、こちら漁場での観測値が望ましいが、内海区水産研究所尾道試験場資料以外には適当な観測資料がない。

--- 36 ---
尾道試験地は、尾道水道の岸側に位置し、厳密な海岸と密接なつながりをもつことは、第3章に述べる水温、塩分の変化からも推察されるところである。水温と塩分について、1948年12月から1964年2月までの沿岸定期観測資料から、各年の12、1、2月の別、月別の平均値を平年値との差を求めて図示すると、第33図のようになる。

Fig. 33. Diagram representing the results shown in Table 28.

さきに標準化1航海当たり漁撈量が、1954—1956、1962年では、他の年に比較して小さいと述べたが、その原因を第33図によって検討すると、これらの各年は、産卵期に当たる12月から1月の水温が他の年に比較して高いことがわかる。また1953、1957、1959、1961、1963年は、それぞれ高漬年で産卵期水温は平年にくらべて低い。

漁撈量は、漁法、漁具数、出漁日数、魚の資源量、魚積などによって増減するはずである。このうち魚積は、漁撈努力を支配する1つの要因であるが、イカノギ漁撈網の操業は、早春の漁期に当たることは既述の通りであり、その着魚数は往常ほど増加しているので、一応魚積の高低による漁撈努力に対する影響を無視できよう。そうすると、某年の漁撈網漁撈量は漁期の遅速を無視すると、漁具数と出漁日数と資源量によ
によって決まるものと推定される。広島県農林水産統計資料（1953—1963）から、漁獲数と標準航路日数との関係を求めると、第34図のようになる。

第34図によると、漁獲数と航路日数との関係はほぼ一定で、ただ1957年はじめは漁獲の割合が特別に小さいが、漁具1統当たりの出漁日数は毎年変化が少ないといえる。以上のことから1954—1956、1962年の1航路当たり漁獲量が小さいことは、航路日数が漁獲数に対し多いか少ないかによるものでなく、イカナゴ資源量が小さかったことがおもな原因と思われる。産卵期の水温がイカナゴ漁況に大きな影響をもたらしたかどうかについて以下検討を試みる。

第21表は、内海区水産研究所尾道試験所沿岸定時観測資料による1953年から1964年までの、12、1、2月における各旬別平均水温を示す。

Table 21. Seasonal and annual changes of the average water temperature obtained every ten days from December to February of next year, based on the regular coastal oceanographic observation conducted by the Onomichi Branch Station of Naikai Regional Fisheries Research Laboratory (°C).

<table>
<thead>
<tr>
<th>Year</th>
<th>1952</th>
<th>'53</th>
<th>'54</th>
<th>'55</th>
<th>'56</th>
<th>'57</th>
<th>'58</th>
<th>'59</th>
<th>'60</th>
<th>'61</th>
<th>'62</th>
<th>'63</th>
<th>'64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month</td>
<td></td>
</tr>
<tr>
<td>January</td>
<td></td>
</tr>
<tr>
<td>Early</td>
<td></td>
</tr>
<tr>
<td>Middle</td>
<td></td>
</tr>
<tr>
<td>Late</td>
<td></td>
</tr>
<tr>
<td>February</td>
<td></td>
</tr>
<tr>
<td>Early</td>
<td></td>
</tr>
<tr>
<td>Middle</td>
<td></td>
</tr>
<tr>
<td>Late</td>
<td></td>
</tr>
<tr>
<td>December</td>
<td></td>
</tr>
<tr>
<td>Middle Dec.</td>
<td>59.39</td>
<td>64.35</td>
<td>60.10</td>
<td>61.31</td>
<td>55.29</td>
<td>58.70</td>
<td>58.05</td>
<td>59.41</td>
<td>57.34</td>
<td>61.08</td>
<td>55.00</td>
<td>61.88</td>
<td>—</td>
</tr>
<tr>
<td>Late Jan.</td>
<td></td>
</tr>
<tr>
<td>December-January</td>
<td>74.27</td>
<td>80.07</td>
<td>76.47</td>
<td>76.72</td>
<td>69.44</td>
<td>74.27</td>
<td>73.74</td>
<td>75.13</td>
<td>72.64</td>
<td>77.45</td>
<td>69.82</td>
<td>76.68</td>
<td>—</td>
</tr>
</tbody>
</table>

また第35図は、1948年から1964年までの各年における1、2、12月の月別平均水温の平年水温との差および広島県イカナゴ総漁獲量と1航路当たり漁獲量の経年変化を示す。なお、これら各年の12月水温は、次の年の上欄に記載のものである。すなわち、ここにいう1953年12月水温は、1952年12月水温である。

第35図によると、1954—1956、1962年の不漁年は、12月の水温がいずれも平年以上で、1、2月の水温もまた平年水温より高目である。この影響として(1)イカナゴ生殖が悪い、(2)魚獲が減少する、(3)産卵期が遅れて漁期が短くなる。などの要因が考えられる。1957、1962年は、漁獲数に対する航路日数が小さいが、1962年は産卵期の遅延にもとづく漁期の短縮がうかがわれ、1957年は漁期は平年並みかそれ以上

—38—
12月から1月までの各月別の平均水温の合計値と、イカナゴ漁獲の1標準漁業当たり漁獲量との関係を年別に示すと第36図のようになる。これによると、イカナゴ漁獲の豊囲は、12月から1月までの水温の和の大小によって幾分推定できるようで、低水温は豊漁を意味するといえよう。沢田（1966）も提到する、大阪湾について、産卵期および産卵後を通じての水温が、例年より低目に推移する年、特に12～1月の水温低下が大きい年には当才魚が好漁の場合が多いことを報告した。

(a) 水亜比重

第37図は、水温と同様、尾道試験地資料による年別の1、12月の旬別平均水温比重を示したものである。1954—1956年では、その前年に当たる12月の上、中、下旬の比重は低いが、1949、1952、1953年では、前
年の12月の比重が高く、1949、1953年では、1月の比重も高い。なお第22表に1、2、12月の各年別、旬別平均比重を示す。

Fig. 37. Average specific gravity in each period of ten days from December to January of next year. Solid circles, early in the month; soft circles, middle in the month; triangles, late in the month.

第38図は、1、12月の各旬別平均比重の合計値と1標準化航海数当たりの漁獲量との関係を示したもので、

Fig. 38. Relationship between the catch per unit effort and the specific gravity accumulated from December to January of next year.

Table 22. Seasonal and annual changes of the average specific gravity in each period of ten days from December to February of next year, 1953-1954.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1953</td>
<td>54</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>144.2558</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>144.2558</td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>144.2558</td>
</tr>
<tr>
<td></td>
<td>57</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>144.2558</td>
</tr>
<tr>
<td></td>
<td>58</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>144.2558</td>
</tr>
<tr>
<td></td>
<td>59</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>144.2558</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>144.2558</td>
</tr>
<tr>
<td></td>
<td>61</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>144.2558</td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>144.2558</td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>144.2558</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>144.2558</td>
</tr>
</tbody>
</table>

accumulated specific gravity
これによると、12～1月の比重の高低はイカナゴ漁獲量と相関がみられるようで、水温の上下とともに重要な要因とみなされる。

第2章 イカナゴの生態に関する基礎的研究

本章は、イカナゴの成長・飼育条件・性比・網紋・年令組成・産卵期・生殖腺・食性・摂食回数・摂取量・飼育試験結果・体脂肪変化・日周期活動・底質選択性・砂潜入速度・体色変化・夏眠・寄生虫・遊泳層・塩分抵抗力・酸素消費量・蓄養など、イカナゴの生態について述べる。

第1節 成長

第1項 形態

McIntosh, W. C., E. E. Prince (1890) は、Ammodites tobianus (Linnaeus) の形態について詳細し、Ford, E. (1920) は、Plymouth 水域で1919年に採取した Ammodites tobianus (L.) と Ammodites lanceolatus (Lessevage) の後期魚期の形態を比較論述し、また Corbin, B. A., Vidya Vati (1949) も Celagic Sea と Plymouth 水域で採集したイカナゴ類の形態について比較研究した。しかし Ammodites personatus (G.) の幼魚期形態についてあまり記載がないので、はじめに多少触れしておく。

イカナゴ類は Sand-ced といわれるように、吻端は突出し、魚体はみならかで砂に潜入するのに適する。さきに著者の1人井上 (1949) は人工飼育魚の魚体は半透明で全長 4.0 mm；吻は突出せず、体の縁辺は仔魚期であとわれ、遊泳は断続的であると述べた。その後成長して、全長 4.5 mm に達すると卵巣は収斂され、かつ脚類の nauplii を捕食するようになる。体長 12.5 mm に達すると仔魚期は消失し、Ammodites tobianus (L.) と同じく尾鰭は正常鎖となり、背鰭、臀鰭も明瞭になる。このところでは、吻はまだ突出せず、肛門は吻端から体の約 8% のところに開口する。色素は吻端にはみられないので、頭部には斑点状に集合したものと、かなり大きな黒斑 1 個がみられ、体側には内臓の周辺に著しく黒斑が飾から肛門まで体表を透してうまれる。また肛門から尾鰭基部、背鰭から尾鰭基部には黒色素斑が 2 列に線状に並ぶ。

体長 2 cm 以上に達すると、吻は突出し、吻端および尾鰭基部には黒色素斑が出現する。体長 3 cm 前後に達すると、下脇に色素がみられるようになり、背鰭から尾鰭までの黒色素線は 2 ～ 3 列となる。

体長 4 cm 以上に達すると、肛門から尾鰭基部までの黒色素線は 2 列、背鰭から尾鰭基部までの黒色素線は 4 列となり、尾鰭には溝の黒色線が直線状に突刺に向けて出現する。

体長 5 cm 以上に達すると、黒色素斑は体側に増加し、後期魚期に入る。

Fig. 39. (1—3). Monthly changes of the body length of the specimens caught at the fishing ground of Saizaki, Nakaze and Tachibana in Hiroshima Prefecture. Solid circles, 0-year fish; crosses, 1-year fish; soft circles, 2-year fish.
第2項 体 長
1 成 長 度

イカナゴの成長度について井上（1949）は、兵庫県洲本産当イカナゴの体長L（cm）と孵化後の經過日数Dとの関係を次式で示した。

\[L = 0.6927 + 0.000457D^2 \]

また1948年から1950年までの広島県三原水道産当イカナゴの成長度を、産卵期の遅速により異なり、産卵期の早い年ほど成長がすくわれていると述べた。

1948年から1963年までに測定した採捕地、採捕日別の体長のうち観測値の多い広島県幸崎、中頃、立花の3漁場について、平均体長を採集日ごとに示すと、第39図のようになる。

これによると、各漁場とも採捕日または年によって平均体長の幅は、かなり広いことがわかる。

第40図は、1954年孵化した当才魚の成長度を、幸崎、中頃、立花の各漁場別に示したもので、立花産イカナゴの体長は、幸崎、中頃産イカナゴよりも大きいことを示す。

第41、42図は、1959—1961年における兵庫県養波および明石（播磨灘）産イカナゴについて、採捕日別の全長組成百分率を示したものである。
Fig. 40. Monthly changes of the body length of the larval specimens caught at the fishing ground of Saizaki, Nakaze and Tachibana in 1954. Solid circles, Saizaki; crosses, Nakaze; soft circles, Tachibana.

Fig. 41. (1 ~ 3). Yearly changes of the total length composition of the specimens caught at the fishing ground of Ikuha, Hyogo Prefecture, during years 1959~1961.

--- 43 ---
Fig. 41. (2).

Ikuha 1960

Total length
Fig. 41. (3).

Total length

Ikou 1981
Fig. 42. (1~3). Yearly changes of the total length composition of the specimens caught at the fishing ground of Akashi, Hyogo Prefecture, during years 1959-1961.
1961年は、イカナゴの調査年であるが、イノ・イカナゴ研究会要報第1号（1962）から兵庫県水産試験場資料を引用すると、第43、44図のように1961年の山は大きい。しかし1959、1960、1961年の各年成長度を第41、42図によって比較すると、1961年のイカナゴは、その他の年にくらべて成長は劣る。

すなわち、イカナゴの成長度は、(1)年によって異なる。(2)生息環境によって異なる。一般的に、魚の成長は飼育の質と量によるものである。後述のように産卵期水温が寒冷な年は、いわゆる寒仔、春仔の2つの産卵群がみられ、このような年は豊魚年に当たる。しかし一方では、飼生物のプランクトンは後述のように少ないので、豊漁年の魚体は全般的に小型であり、春仔が寒仔よりも小型になることは当然想像される。これに反して産卵期水温が温暖な年は、イカナゴの不漁年に当たる。春仔は出現しないが、飼生物のプランクトンは豊富で、このような年の魚体は、春仔も繁殖期に混交するため魚体が小型に経過して稚魚期では大型となるようである。またイカナゴの季節的成長は、1～6月には良好で6月以降では鰹。さきに井上（1949）は、1才魚と2才魚とは、体長と体重との関係から区別できるとし

Fig. 42. (3).

Fig. 43. Annual fluctuation of the sand-lance catch in Hyogo Prefecture, caught by the "Hoop net" from March to April, 1952-1961, (based on the data of Hyogo Fisheries Experimental Station).

Fig. 44. Relationship between the standardized number of trips and the sand-lance catch per unit effort of the "Hoop net" in Hyogo Prefecture, during years 1954-1961, based on the assumption that the fishing efficiency of standard fishing boat of 3-5 ton type was constant within the recent 8 years dealt with the present investigation.
たが、兵庫県水産試験場資料（1962）からも、耳石の半径と全長との関係は同様なことを示す。6月から12月までは、生理的要因すなわち夏眠と生殖腺の発達のために体重の増加傾向が見られると思われる。

2. 湊浜におけるイカナゴの選択性

内橋（1960）によれば、兵庫県のイカナゴ漁具は濃瀬網（袋待網）、船曳き、地曳き網、撒り網、労働済網、バッチ網および似くなる網で、そのうち地曳き網、労働済網、似なる網は近年使用しないという。三重県水産試験場川越分場資料（1951）によれば、伊勢湾ではバッチ網が使用され、また石垣（1956）によれば、北海道では、船曳き網、小型定置網、播引網、地曳き網、回網、桜網が使用されるという。さらに岩手県では桜網、船曳き網を使用することが、地方許可漁業漁場利用調査（1953）からかがわかる。

広島県では船曳き網、袋待網が使用され、愛媛県、岡山県では主として袋待網が使用される。内橋（1950）はイカナゴの漁具別の漁業時期を、1936年資料から袋待網は3—6月、船曳き網は1—2月、11—12月で地

<table>
<thead>
<tr>
<th>Hoop net</th>
<th>Date</th>
<th>No.</th>
<th>2.5</th>
<th>3.0</th>
<th>3.5</th>
<th>4.0</th>
<th>4.5</th>
<th>5.0</th>
<th>5.5</th>
<th>6.0</th>
<th>6.5</th>
<th>7.0</th>
<th>7.5</th>
<th>8.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960 Apr.</td>
<td>2</td>
<td>100</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>1.00</td>
<td>5.00</td>
<td>12.00</td>
<td>25.00</td>
<td>29.00</td>
<td>21.00</td>
<td>6.00</td>
</tr>
<tr>
<td>6</td>
<td>150</td>
<td>---</td>
<td>0.68</td>
<td>1.33</td>
<td>4.00</td>
<td>14.67</td>
<td>18.00</td>
<td>31.33</td>
<td>14.67</td>
<td>12.67</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>100</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>1.00</td>
<td>9.00</td>
<td>22.00</td>
<td>35.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>150</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>61 Apr.</td>
<td>7</td>
<td>200</td>
<td>2.50</td>
<td>14.00</td>
<td>35.00</td>
<td>33.50</td>
<td>7.00</td>
<td>6.50</td>
<td>0.50</td>
<td>1.00</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>200</td>
<td>---</td>
<td>2.00</td>
<td>15.50</td>
<td>29.00</td>
<td>33.50</td>
<td>10.50</td>
<td>3.50</td>
<td>1.00</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Boat seine</th>
<th>Date</th>
<th>No.</th>
<th>2.5</th>
<th>3.0</th>
<th>3.5</th>
<th>4.0</th>
<th>4.5</th>
<th>5.0</th>
<th>5.5</th>
<th>6.0</th>
<th>6.5</th>
<th>7.0</th>
<th>7.5</th>
<th>8.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>59 Dec.</td>
<td>8</td>
<td>110</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>1.89</td>
<td>6.36</td>
<td>12.73</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>24</td>
<td>200</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>1.50</td>
<td>7.00</td>
<td>10.50</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>146</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>0.68</td>
<td>1.35</td>
<td>10.81</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>60 Jan.</td>
<td>8</td>
<td>170</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>0.59</td>
<td>5.29</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>14</td>
<td>200</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>0.50</td>
<td>5.50</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>18</td>
<td>210</td>
<td>---</td>
</tr>
<tr>
<td>26</td>
<td>200</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>0.50</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>61 Jan.</td>
<td>8</td>
<td>130</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>3.00</td>
<td>14.00</td>
<td>31.00</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>13</td>
<td>100</td>
<td>---</td>
</tr>
<tr>
<td>19</td>
<td>110</td>
<td>---</td>
</tr>
<tr>
<td>May</td>
<td>5</td>
<td>200</td>
<td>---</td>
<td>1.00</td>
<td>15.00</td>
<td>33.50</td>
<td>29.00</td>
<td>18.50</td>
<td>2.00</td>
<td>1.00</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>10</td>
<td>200</td>
<td>---</td>
<td>0.50</td>
<td>11.00</td>
<td>20.50</td>
<td>16.00</td>
<td>21.50</td>
<td>18.00</td>
<td>7.50</td>
<td>4.50</td>
<td>0.50</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pacchi-ani</th>
<th>Date</th>
<th>No.</th>
<th>2.5</th>
<th>3.0</th>
<th>3.5</th>
<th>4.0</th>
<th>4.5</th>
<th>5.0</th>
<th>5.5</th>
<th>6.0</th>
<th>6.5</th>
<th>7.0</th>
<th>7.5</th>
<th>8.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>59 Nov.</td>
<td>29</td>
<td>120</td>
<td>---</td>
</tr>
<tr>
<td>Dec.</td>
<td>2</td>
<td>200</td>
<td>---</td>
</tr>
<tr>
<td>60 May</td>
<td>120</td>
<td>---</td>
<td>2.67</td>
<td>3.33</td>
<td>13.33</td>
<td>23.33</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>150</td>
<td>---</td>
<td>6.72</td>
<td>2.67</td>
<td>2.67</td>
<td>8.00</td>
<td>9.33</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>23</td>
<td>200</td>
<td>---</td>
<td>0.50</td>
<td>0.50</td>
<td>2.50</td>
<td>3.50</td>
<td>7.00</td>
<td>11.50</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>31</td>
<td>180</td>
<td>---</td>
<td>1.21</td>
<td>0.56</td>
<td>1.21</td>
<td>6.77</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>June</td>
<td>9</td>
<td>200</td>
<td>---</td>
</tr>
<tr>
<td>Nov.</td>
<td>120</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>1.00</td>
<td>1.00</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Dec.</td>
<td>3</td>
<td>100</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>1.00</td>
<td>1.00</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>61 Mar.</td>
<td>2</td>
<td>120</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>1.00</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>9</td>
<td>89</td>
<td>---</td>
<td>1.00</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>May</td>
<td>14</td>
<td>100</td>
<td>---</td>
<td>1.00</td>
<td>6.000</td>
<td>3.00</td>
<td>5.00</td>
<td>15.00</td>
<td>22.00</td>
<td>14.00</td>
<td>10.00</td>
<td>11.00</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>22</td>
<td>100</td>
<td>---</td>
<td>1.00</td>
<td>1.00</td>
<td>4.00</td>
<td>14.00</td>
<td>17.00</td>
<td>14.00</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>28</td>
<td>100</td>
<td>---</td>
<td>1.00</td>
<td>3.000</td>
<td>14.00</td>
<td>20.00</td>
<td>10.00</td>
<td>7.00</td>
<td>2.00</td>
<td>2.00</td>
<td>1.00</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>June</td>
<td>3</td>
<td>100</td>
<td>---</td>
<td>1.00</td>
<td>3.00</td>
<td>9.00</td>
<td>16.00</td>
<td>19.00</td>
<td>20.00</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>11</td>
<td>100</td>
<td>---</td>
<td>2.00</td>
<td>8.00</td>
<td>16.00</td>
<td>15.00</td>
<td>20.00</td>
<td>14.00</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>16</td>
<td>100</td>
<td>---</td>
<td>7.00</td>
<td>6.00</td>
<td>21.00</td>
<td>21.00</td>
<td>17.00</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

--- 48 ---
ネット： "Boat seine" and "Pacchi-ami", based on the data of Ikuha, Hyogo Prefecture.

<table>
<thead>
<tr>
<th>8.0</th>
<th>8.5</th>
<th>9.0</th>
<th>9.5</th>
<th>10.0</th>
<th>10.5</th>
<th>11.0</th>
<th>11.5</th>
<th>12.0</th>
<th>12.5</th>
<th>13.0</th>
<th>13.5</th>
<th>14.0</th>
<th>14.5</th>
<th>15.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>19.00</td>
<td>14.00</td>
<td></td>
</tr>
<tr>
<td>8.00</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>27.27</td>
<td>25.46</td>
<td>17.27</td>
<td>3.61</td>
<td>0.91</td>
<td>0.91</td>
<td>2.73</td>
<td>0.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.50</td>
<td>16.00</td>
<td>2.00</td>
<td>0.50</td>
<td>0.50</td>
<td>6.00</td>
<td>13.00</td>
<td>8.50</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>0.50</td>
</tr>
<tr>
<td>25.68</td>
<td>30.41</td>
<td>14.19</td>
<td>2.70</td>
<td>2.70</td>
<td>3.38</td>
<td>1.35</td>
<td>2.03</td>
<td>1.35</td>
<td>1.35</td>
<td>1.35</td>
<td>1.35</td>
<td>1.35</td>
<td>1.35</td>
<td>1.35</td>
</tr>
<tr>
<td>15.29</td>
<td>20.00</td>
<td>7.06</td>
<td>1.18</td>
<td>1.77</td>
<td>4.12</td>
<td>8.24</td>
<td>10.55</td>
<td>8.62</td>
<td>6.47</td>
<td>2.35</td>
<td>2.94</td>
<td>2.94</td>
<td>1.77</td>
<td>0.59</td>
</tr>
<tr>
<td>14.50</td>
<td>18.50</td>
<td>8.50</td>
<td>6.00</td>
<td>3.50</td>
<td>9.00</td>
<td>14.00</td>
<td>14.00</td>
<td>3.00</td>
<td>2.00</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.76</td>
<td>16.67</td>
<td>13.33</td>
<td>12.38</td>
<td>5.24</td>
<td>13.33</td>
<td>16.67</td>
<td>13.81</td>
<td>2.86</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.50</td>
<td>11.50</td>
<td>18.00</td>
<td>12.50</td>
<td>7.00</td>
<td>16.00</td>
<td>16.50</td>
<td>7.50</td>
<td>2.00</td>
<td>2.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.00</td>
<td>13.00</td>
<td>10.00</td>
<td>5.00</td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.67</td>
<td>26.67</td>
<td>12.67</td>
<td>6.67</td>
<td>0.67</td>
<td>1.33</td>
<td>1.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.24</td>
<td>38.57</td>
<td>18.57</td>
<td>6.67</td>
<td>0.95</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.00</td>
<td>45.00</td>
<td>16.67</td>
<td>6.67</td>
<td></td>
</tr>
<tr>
<td>8.46</td>
<td>25.39</td>
<td>35.39</td>
<td>14.62</td>
<td>2.31</td>
<td>5.39</td>
<td>4.62</td>
<td>1.54</td>
<td></td>
<td>1.54</td>
<td>0.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.00</td>
<td>42.00</td>
<td>29.00</td>
<td>9.00</td>
<td>1.00</td>
<td>2.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.46</td>
<td>48.18</td>
<td>13.64</td>
<td>1.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表中は、1948年から1950年の漁獲タンクイカの漁獲状況を示しています。1951年以降は漁獲状況を示しておりません。

内橋（1950）によると、漁獲タンクは兵庫県での漁獲タンクイカのプランクトン生活期の稚魚を漁獲し、船びき網、パッチ網は成魚を漁獲対象にすると、第41図から漁具別の全体漁獲をみると、第23表のように漁獲タンクイカ体長組成は、パッチ網、船びき網の体長組成とは異なる。
すなわち、内領のいうように前者はイカナゴ稚魚を選択的に採捕するが、後者は0、1才魚を混獲するものといえよう。しかし、広島県東部の中部、立花、走島および香川県高見島などでは、イカナゴ漁獲にはとっても袋持網を使用することが、その漁獲イカナゴ体長組成は漁場または漁期により、0、1、2才魚の混獲割合を異にし、兵庫県のほどよいとは相違する。

三重県水産試験場前川越分場試料（1951）によれば第24表に示すように、伊勢湾のバッチ網は3月から使用され、漁獲イカナゴの最小体長は2.5cmを示し、兵庫県背波、明石のバッチ網漁獲組成と異なり、稚魚を採捕することを示す。

Table 24. Body length composition of the specimens caught by the “Pacchi-ami” in Mie Prefecture.

<table>
<thead>
<tr>
<th>Date</th>
<th>cm 2.3</th>
<th>2.8</th>
<th>3.3</th>
<th>3.8</th>
<th>4.3</th>
<th>4.8</th>
<th>5.3</th>
<th>5.8</th>
<th>6.3</th>
<th>6.8</th>
<th>7.2</th>
<th>T. N.</th>
<th>Fishing ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>1951Mar.</td>
<td>16</td>
<td>31.67</td>
<td>45.00</td>
<td>10.00</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>60</td>
<td>Kusu-oki</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>—</td>
<td>6.67</td>
<td>23.33</td>
<td>46.67</td>
<td>21.67</td>
<td>1.67</td>
<td>—</td>
<td>—</td>
<td>60</td>
<td>Noma-oki</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>—</td>
<td>1.67</td>
<td>15.00</td>
<td>53.33</td>
<td>28.33</td>
<td>1.67</td>
<td>—</td>
<td>—</td>
<td>60</td>
<td>Yokaei-oki</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>—</td>
<td>3.33</td>
<td>28.33</td>
<td>35.00</td>
<td>28.33</td>
<td>3.33</td>
<td>—</td>
<td>1.67</td>
<td>60</td>
<td>Wakamatsu-oki</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr.</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>8.33</td>
<td>25.00</td>
<td>38.33</td>
<td>23.33</td>
<td>5.00</td>
<td>60</td>
<td>Shirako</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>15.00</td>
<td>51.67</td>
<td>30.00</td>
<td>3.33</td>
<td>—</td>
<td>60</td>
<td>Noma-oki</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.67</td>
<td>30.00</td>
<td>60.00</td>
<td>6.67</td>
<td>1.67</td>
<td>60</td>
<td>Shirako</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>23.33</td>
<td>43.33</td>
<td>23.33</td>
<td>10.00</td>
<td>—</td>
<td>—</td>
<td>60</td>
<td>Wakamatsu</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>—</td>
<td>—</td>
<td>26.67</td>
<td>16.67</td>
<td>25.00</td>
<td>13.33</td>
<td>15.00</td>
<td>3.33</td>
<td>60</td>
<td>Kusu-oki</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

すなわち、バッチ網による漁獲イカナゴの体长組成について、兵庫県と三重県との差および袋持網による漁獲イカナゴの体長組成について広島県と兵庫県との差は、おもに漁具の時期に基因するものであり、漁具の構成から推定しても魚体の選択性は少ないといえる。また兵庫県ではバッチ網と船びき網に1才魚の混獲があり、これらの漁獲は砂底をひき網するもので、主として、上、中層に遊泳する稚魚を捕獲する袋持網とは幾分漁具の用途を異にするためである。

第2節 肥満度

それにイカナゴ稚魚の成長度は1—6月には大きいが、7—12月には小さく、また各採捕日ごとの体長変異の幅は広いことを示した。体長について行なったと同様、採捕日別に広島県栄崎、中瀬および立花漁場のイカナゴ肥満度の資料を示すと、第45図のようになる。

Fig. 45. (1—3). Monthly changes of the average fatness of the specimens caught respectively at the fishing grounds of Saizaki, Nakaze and Tachitan in Hiroshima Prefecture. Solid circles, 0-year fish; crosses, 1-year fish; soft circles, 2-year fish.
これからの図によると、肥満度は体長のばあいと同様、各漁場ごとに年々異なり、変異の顕著も広く6月以降では全般に低下の傾向を示すが、産卵終了直後の1月が最も小さい。

第46図は、1954年孵化当才魚の肥満度を、幸崎、中鶴および立花の各漁場別に図示したものである。

これにより、同じ年に孵化したイカナゴでも、魚種によって肥満度を異にし、体長では差のみとみられるなかった幸崎産と中鶴産イカナゴでも、肥満度では明らかに差があると考えられる。これは成長度について述べたように、相対的な鰭の質と量によって決まるが、同時に捕獲回遊の遅いことを物語る。つぎに、0才魚と1才魚との肥満度の推移について、第45図をみると、稚魚期の肥満度は1才魚に劣るが、0才魚は5月下旬ごろまでに急速に増加し、両者間の差はほとんど認められなくなる。また2才魚は、0、1才魚にくらべて肥満度は全般に小さい傾向を示す。
第47図は、兵庫県脇波における魚体脂肪率調査資料（30尾）から、年別に各調査日ごとの肥満度（本資料は体長の測定を欠くので、体長のかわりに全長を使用した）を示したものである。

Fig. 47. (1—2). Yearly changes of the fatness of the specimens caught at the fishing ground of Ikuha in Hyogo Prefecture, 1959—1961. Solid circles, 0-year fish; crosses, 1-year fish.
Remarks: Total length is used, instead of body length.
Fig. 47. (2).

Fig. 48. Yearly changes of the fatness of the specimens caught at the fishing ground of Sakurai in Ehime Prefecture, 1958–1961.

第3節 腎状骨数
すると、Lindberg（1937）は北半球のイカナゴ属魚類は、Ammodytes hexapterus Pallas, Ammodytes tobianus Linne およびAmmodytes personatus Girardの3種に区別され、各種はそれぞれ若干の亜種または品種に細別されることが指摘した。川村（1940）は、青森県茂上市と北千島区守島沿のイカナゴの脊椎骨数を検し、前者は、61～66個（平均63.6）であるに対し、後者では、69～72個（平均70.7）で、後者は前者より平均値において7個多いことを知った。氏はこの差異をもって地方的変異と解し、すべてAmmodytes personatusに同定した。しかし、Lindbergにしたがうと、守島産のものは、Ammodytes hexapterus Pallasに該当することは明らかである。Hatano M., R. Okamoto（1950）は、北海道沿いに至る各地沿岸から得た多数のイカナゴについて脊椎骨数を検し、モード値62をもつ亜種と62をもつ亜種に分けられ、北海道産のものは前者に、伊勢湾産のものは後者に属すること、および北緯三十六度のものに対して、これら両亜種が混生していることを指摘した。

Lindberg（1937）による種の検索

1. 脊椎骨数は、67～72個（Urostyleを含む）。背鰭は、56～64軟条（占守島、北洋および北大西洋の北部）……Ammodytes hexapterus Pallas。
2. 脊椎骨数は、60～66（Urostyleを含む）。背鰭は、51～56軟条（本邦各地の沿岸に広く分布するが、その南限は不明）Ammodytes personatus Girard。

これによると、日本産イカナゴは、すべてA. personatusで、骨数変異の幅は、60～66である。内橋（1950）によれば、日本産イカナゴ脊椎骨数は南低北高を示し、イカナゴ脊椎骨数は産卵期の水温と深い関係があると述べた。筆者らは、瀬戸内海沿岸のイカナゴ脊椎骨数を測定し、さらに、山口、岡山、兵庫、愛媛、香川、徳島各県水産試験場委託調査結果ならびに既往の資料について取りまとめた。イカナゴ脊椎骨数は、すでに松原（1955）が指摘した通りA. personatusでは59～66で、瀬戸内海産ではモード62と63を示した。

調査方法

イカナゴ脊椎骨数の計測は、大形魚については魚体を解剖して検査したが、小形魚についてはアリザリン染色を行ない、これをガラス板で押しつぶして検査した。脊椎骨数の計測に伴う個人誤差は、極力避けるよう努めたが、必ずしも満足とは言えなかった。

調査結果

アリザリン染色によってイカナゴ脊椎骨数の計測を行なうれば、アリザリン染色のできる魚体は、体長1.05cm以上である。また体長1.05cmから1.20cmまでの魚体は、頭部から5節付近までとUrostyle付近は染色するが、この中間部は石灰分の沈着が少ないため顕著しない。したがって脊椎骨数を測定できた最小魚体は、体長1.20cmであった。

年令変定を行なった資料に基づき漁場別にイカナゴの脊椎骨数について集計したものを第25表に示す。

Table 25. Varieties of the vertebral numbers of the specimens landed at different places.
Table 25. Continued.

<table>
<thead>
<tr>
<th>Landing place</th>
<th>Year</th>
<th>56</th>
<th>57</th>
<th>58</th>
<th>59</th>
<th>60</th>
<th>61</th>
<th>62</th>
<th>63</th>
<th>64</th>
<th>65</th>
<th>66</th>
<th>67</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setoda</td>
<td>'54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>18</td>
<td>27</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>Kamuri</td>
<td>'56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>52</td>
<td>292</td>
<td>412</td>
<td>145</td>
<td></td>
<td></td>
<td></td>
<td>902</td>
</tr>
<tr>
<td>Hoso-shima</td>
<td>'56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>25</td>
<td>152</td>
<td>188</td>
<td>52</td>
<td>3</td>
<td></td>
<td></td>
<td>423</td>
</tr>
<tr>
<td>Hosonosu</td>
<td>'57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>57</td>
<td>212</td>
<td>187</td>
<td>44</td>
<td>8</td>
<td></td>
<td></td>
<td>517</td>
</tr>
<tr>
<td>Saizaki</td>
<td>'49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>11</td>
<td>74</td>
<td>100</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>'50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>17</td>
<td>98</td>
<td>170</td>
<td>38</td>
<td>4</td>
<td></td>
<td></td>
<td>327</td>
</tr>
<tr>
<td></td>
<td>'51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>9</td>
<td>6</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>'52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>11</td>
<td>86</td>
<td>98</td>
<td>38</td>
<td>4</td>
<td></td>
<td></td>
<td>238</td>
</tr>
<tr>
<td></td>
<td>'53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22</td>
<td>118</td>
<td>500</td>
<td>734</td>
<td>191</td>
<td>15</td>
<td>2</td>
<td></td>
<td>1,582</td>
</tr>
<tr>
<td></td>
<td>'54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td>75</td>
<td>375</td>
<td>459</td>
<td>116</td>
<td>8</td>
<td></td>
<td></td>
<td>1,046</td>
</tr>
<tr>
<td></td>
<td>'55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>238</td>
<td>1,080</td>
<td>407</td>
<td>338</td>
<td>35</td>
<td></td>
<td>1</td>
<td>3,124</td>
</tr>
<tr>
<td></td>
<td>'56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41</td>
<td>187</td>
<td>737</td>
<td>794</td>
<td>201</td>
<td>20</td>
<td></td>
<td></td>
<td>1,980</td>
</tr>
<tr>
<td></td>
<td>'57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36</td>
<td>110</td>
<td>376</td>
<td>380</td>
<td>85</td>
<td>12</td>
<td>1</td>
<td></td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>'58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>33</td>
<td>49</td>
<td>13</td>
<td>2</td>
<td></td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>'59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>144</td>
<td>773</td>
<td>3,376</td>
<td>4,206</td>
<td>1,062</td>
<td>103</td>
<td>4</td>
<td></td>
<td>9,668</td>
</tr>
<tr>
<td>Nakaze</td>
<td>'52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>4</td>
<td>20</td>
<td>18</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>'53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>7</td>
<td>67</td>
<td>351</td>
<td>350</td>
<td>97</td>
<td>5</td>
<td></td>
<td>880</td>
</tr>
<tr>
<td></td>
<td>'54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>79</td>
<td>529</td>
<td>502</td>
<td>163</td>
<td>10</td>
<td>1</td>
<td></td>
<td>1,291</td>
</tr>
<tr>
<td></td>
<td>'55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td>187</td>
<td>1,487</td>
<td>1,266</td>
<td>396</td>
<td>26</td>
<td></td>
<td></td>
<td>3,385</td>
</tr>
<tr>
<td></td>
<td>'56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>121</td>
<td>416</td>
<td>387</td>
<td>98</td>
<td>7</td>
<td></td>
<td></td>
<td>1,060</td>
</tr>
<tr>
<td></td>
<td>'57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39</td>
<td>181</td>
<td>655</td>
<td>659</td>
<td>129</td>
<td>12</td>
<td></td>
<td></td>
<td>1,675</td>
</tr>
<tr>
<td></td>
<td>'58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>'59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>6</td>
<td>31</td>
<td>198</td>
<td>646</td>
<td>692</td>
<td>175</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>'60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>28</td>
<td>57</td>
<td>8</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>'61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>9</td>
<td>137</td>
<td>850</td>
<td>4,150</td>
<td>3,952</td>
<td>1,074</td>
<td>76</td>
<td>2</td>
</tr>
<tr>
<td>Tachibana</td>
<td>'49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>68</td>
<td>100</td>
<td>42</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>'50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>'51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>27</td>
<td>97</td>
<td>133</td>
<td>48</td>
<td>1</td>
<td></td>
<td></td>
<td>311</td>
</tr>
<tr>
<td></td>
<td>'52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>'53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>59</td>
<td>332</td>
<td>358</td>
<td>83</td>
<td>11</td>
<td>1</td>
<td></td>
<td>849</td>
</tr>
<tr>
<td></td>
<td>'54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>103</td>
<td>519</td>
<td>658</td>
<td>193</td>
<td>10</td>
<td>1</td>
<td></td>
<td>1,499</td>
</tr>
<tr>
<td></td>
<td>'55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>178</td>
<td>947</td>
<td>1,144</td>
<td>305</td>
<td>19</td>
<td></td>
<td></td>
<td>2,604</td>
</tr>
<tr>
<td></td>
<td>'56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td>145</td>
<td>511</td>
<td>790</td>
<td>254</td>
<td>25</td>
<td></td>
<td></td>
<td>1,746</td>
</tr>
<tr>
<td></td>
<td>'57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95</td>
<td>417</td>
<td>3,261</td>
<td>511</td>
<td>347</td>
<td>34</td>
<td>1</td>
<td></td>
<td>3,731</td>
</tr>
<tr>
<td></td>
<td>'58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>171</td>
<td>689</td>
<td>786</td>
<td>184</td>
<td>10</td>
<td></td>
<td></td>
<td>1,675</td>
</tr>
<tr>
<td></td>
<td>'60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>10</td>
<td>45</td>
<td>56</td>
<td>12</td>
<td>2</td>
<td></td>
<td></td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>'62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>6</td>
<td>40</td>
<td>58</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>'64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>80</td>
<td>81</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>'49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>187</td>
<td>1,155</td>
<td>4,663</td>
<td>5,682</td>
<td>1,504</td>
<td>116</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Table 25. Continued.

<table>
<thead>
<tr>
<th>Landing place</th>
<th>Year</th>
<th>56</th>
<th>57</th>
<th>58</th>
<th>59</th>
<th>60</th>
<th>61</th>
<th>62</th>
<th>63</th>
<th>64</th>
<th>65</th>
<th>66</th>
<th>67</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imabari</td>
<td>'57</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>3</td>
<td>6</td>
<td>39</td>
<td>40</td>
<td>7</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td>96</td>
</tr>
<tr>
<td>Hakata-shima</td>
<td>'58</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1</td>
<td>33</td>
<td>147</td>
<td>143</td>
<td>24</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>'59</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>5</td>
<td>31</td>
<td>37</td>
<td>6</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>'60</td>
<td>--</td>
<td>1</td>
<td>1</td>
<td>28</td>
<td>220</td>
<td>784</td>
<td>863</td>
<td>147</td>
<td>8</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>2,054</td>
</tr>
<tr>
<td></td>
<td>'58～'60</td>
<td>--</td>
<td>1</td>
<td>1</td>
<td>29</td>
<td>258</td>
<td>962</td>
<td>1,043</td>
<td>177</td>
<td>11</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>2,484</td>
</tr>
<tr>
<td>Iwaki-shima</td>
<td>'59</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>20</td>
<td>61</td>
<td>270</td>
<td>344</td>
<td>70</td>
<td>11</td>
<td>2</td>
<td>--</td>
<td>778</td>
</tr>
<tr>
<td>Ibuki-shima</td>
<td>'64</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1</td>
<td>10</td>
<td>32</td>
<td>46</td>
<td>11</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>100</td>
</tr>
<tr>
<td>Eno-shima</td>
<td>'64</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1</td>
<td>4</td>
<td>31</td>
<td>46</td>
<td>17</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td>100</td>
</tr>
<tr>
<td>Takami-shima</td>
<td>'53</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>3</td>
<td>2</td>
<td>12</td>
<td>13</td>
<td>5</td>
<td>3</td>
<td>--</td>
<td>--</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>'54</td>
<td>--</td>
<td>1</td>
<td>5</td>
<td>21</td>
<td>64</td>
<td>85</td>
<td>25</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>'55</td>
<td>--</td>
<td>1</td>
<td>5</td>
<td>25</td>
<td>47</td>
<td>49</td>
<td>22</td>
<td>5</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>'54～'55</td>
<td>--</td>
<td>1</td>
<td>91</td>
<td>218</td>
<td>712</td>
<td>938</td>
<td>263</td>
<td>34</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>2,257</td>
</tr>
<tr>
<td>Hiro-shima (West)</td>
<td>'54</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>2</td>
<td>6</td>
<td>40</td>
<td>164</td>
<td>232</td>
<td>68</td>
<td>5</td>
<td>--</td>
<td>517</td>
</tr>
<tr>
<td>" (North)</td>
<td>'54</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>2</td>
<td>14</td>
<td>80</td>
<td>107</td>
<td>33</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>236</td>
</tr>
<tr>
<td>Myoken</td>
<td>'54</td>
<td>--</td>
<td>1</td>
<td>5</td>
<td>21</td>
<td>64</td>
<td>85</td>
<td>25</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>201</td>
</tr>
<tr>
<td>Kazehana</td>
<td>'54</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>5</td>
<td>25</td>
<td>47</td>
<td>49</td>
<td>22</td>
<td>5</td>
<td>--</td>
<td>--</td>
<td>153</td>
</tr>
<tr>
<td>Toyo-shima</td>
<td>'56</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>25</td>
<td>65</td>
<td>62</td>
<td>19</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>171</td>
</tr>
<tr>
<td>Azi</td>
<td>'57</td>
<td>2</td>
<td>3</td>
<td>74</td>
<td>284</td>
<td>806</td>
<td>788</td>
<td>190</td>
<td>30</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>2,179</td>
</tr>
<tr>
<td>Mukuchi-shima</td>
<td>'55</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>8</td>
<td>37</td>
<td>53</td>
<td>14</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>112</td>
</tr>
<tr>
<td>Mushima</td>
<td>'63</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>10</td>
<td>27</td>
<td>47</td>
<td>14</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>100</td>
</tr>
<tr>
<td>Kobi-shima</td>
<td>'63</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>7</td>
<td>22</td>
<td>55</td>
<td>14</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>100</td>
</tr>
<tr>
<td>Sumoto</td>
<td>'48</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>3</td>
<td>69</td>
<td>122</td>
<td>314</td>
<td>358</td>
<td>124</td>
<td>38</td>
<td>8</td>
<td>1,036</td>
</tr>
<tr>
<td></td>
<td>'49</td>
<td>--</td>
<td>1</td>
<td>2</td>
<td>42</td>
<td>144</td>
<td>349</td>
<td>337</td>
<td>91</td>
<td>16</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td>983</td>
</tr>
<tr>
<td></td>
<td>'48～'49</td>
<td>--</td>
<td>1</td>
<td>5</td>
<td>111</td>
<td>266</td>
<td>663</td>
<td>695</td>
<td>215</td>
<td>54</td>
<td>9</td>
<td>--</td>
<td>--</td>
<td>2,019</td>
</tr>
<tr>
<td>Futami</td>
<td>'56</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>43</td>
<td>157</td>
<td>536</td>
<td>529</td>
<td>170</td>
<td>23</td>
<td>1</td>
<td>--</td>
<td>1,459</td>
</tr>
<tr>
<td>Shikanose</td>
<td>'56</td>
<td>--</td>
<td>1</td>
<td>49</td>
<td>219</td>
<td>755</td>
<td>821</td>
<td>232</td>
<td>37</td>
<td>4</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>2,119</td>
</tr>
<tr>
<td></td>
<td>'59</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>20</td>
<td>99</td>
<td>287</td>
<td>296</td>
<td>83</td>
<td>20</td>
<td>--</td>
<td>--</td>
<td>805</td>
</tr>
<tr>
<td></td>
<td>'56～'59</td>
<td>--</td>
<td>1</td>
<td>69</td>
<td>318</td>
<td>1,042</td>
<td>1,117</td>
<td>315</td>
<td>57</td>
<td>4</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>2,924</td>
</tr>
<tr>
<td>Hachibuse</td>
<td>'55</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>13</td>
<td>53</td>
<td>53</td>
<td>27</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>176</td>
</tr>
<tr>
<td>Anaga</td>
<td>'60</td>
<td>3</td>
<td>2</td>
<td>32</td>
<td>108</td>
<td>436</td>
<td>1,019</td>
<td>884</td>
<td>385</td>
<td>65</td>
<td>4</td>
<td>1</td>
<td>2,939</td>
<td></td>
</tr>
<tr>
<td>Gunge</td>
<td>'60</td>
<td>2</td>
<td>2</td>
<td>12</td>
<td>66</td>
<td>191</td>
<td>180</td>
<td>61</td>
<td>8</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>523</td>
</tr>
<tr>
<td>Unosaki</td>
<td>'60</td>
<td>1</td>
<td>2</td>
<td>18</td>
<td>127</td>
<td>419</td>
<td>395</td>
<td>145</td>
<td>23</td>
<td>1</td>
<td>1</td>
<td>1,132</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nojima</td>
<td>'60</td>
<td>--</td>
<td>1</td>
<td>4</td>
<td>20</td>
<td>80</td>
<td>296</td>
<td>291</td>
<td>93</td>
<td>21</td>
<td>3</td>
<td>--</td>
<td>--</td>
<td>809</td>
</tr>
<tr>
<td>Gunchu</td>
<td>'60</td>
<td>1</td>
<td>6</td>
<td>18</td>
<td>86</td>
<td>311</td>
<td>310</td>
<td>105</td>
<td>12</td>
<td>6</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>856</td>
</tr>
<tr>
<td>Naruto</td>
<td>'57</td>
<td>--</td>
<td>4</td>
<td>31</td>
<td>164</td>
<td>406</td>
<td>400</td>
<td>131</td>
<td>34</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1,172</td>
</tr>
</tbody>
</table>

第25表について脊椎骨数の変異の幅をみると、淡路島周辺のイカナゴは、瀬戸内海中央部のものに比較して広い。またイカナゴ脊椎骨数のほとんどが、59～66の範囲にあって、そのモードは62または63である。

高橋（1957）らも述べたように、吻型は脊椎骨が著しくもので、第26表に示す。これによると、多少の増減はあるが、吻型率はほぼ3%くらいと見込まれる。
Table 26. Vertebral deformity of sand-lanet.

<table>
<thead>
<tr>
<th>Fishing ground</th>
<th>Date</th>
<th>Normal</th>
<th>Abnormal</th>
<th>Deformity(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gunge</td>
<td>1960 Apr.</td>
<td>523</td>
<td>20</td>
<td>3.82</td>
</tr>
<tr>
<td>Unosaki</td>
<td>May 17</td>
<td>773</td>
<td>26</td>
<td>3.36</td>
</tr>
<tr>
<td>Nojima</td>
<td>24</td>
<td>809</td>
<td>27</td>
<td>3.44</td>
</tr>
<tr>
<td>Gunchu</td>
<td>26</td>
<td>856</td>
<td>26</td>
<td>3.04</td>
</tr>
<tr>
<td>Nakaze</td>
<td>6</td>
<td>1,039</td>
<td>37</td>
<td>3.56</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>726</td>
<td>22</td>
<td>3.03</td>
</tr>
<tr>
<td>Manabe</td>
<td>'61 Mar. 15</td>
<td>100</td>
<td>2</td>
<td>2.00</td>
</tr>
<tr>
<td>Hashiri</td>
<td>'63 26</td>
<td>100</td>
<td>9</td>
<td>9.00</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>100</td>
<td>4</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>100</td>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Apr. 5</td>
<td>100</td>
<td>8</td>
<td>8.00</td>
</tr>
<tr>
<td>Nakaze</td>
<td>May 14</td>
<td>100</td>
<td>1</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Table 27. Frequency distributions of the mode of vertebral numbers of the specimens caught respectively at the fishing grounds of Akashi (Osaka Bay and Harima Nada), Ikuha and Sumoto in Hyogo Prefecture, in 1959, 1960 and 1962.

<table>
<thead>
<tr>
<th>Year</th>
<th>Mode</th>
<th>1959</th>
<th>1960</th>
<th>1962</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>62</td>
<td>63</td>
<td>62</td>
<td>63</td>
</tr>
<tr>
<td>Place</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akashi (Osaka)</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(Harima)</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Ikuha</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>Sumoto</td>
<td>1</td>
<td>0</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

第1項 瀬戸内海の産地別脊椎数

これらの資料から採捕地別に脊椎数のモードが62または63を占める採集資料の割合を求めるとき、第28表のようになる。
Table 28. Frequency distributions of the mode of vertebral numbers for the specimens caught at different fishing grounds.

<table>
<thead>
<tr>
<th>Prefecture</th>
<th>Place</th>
<th>62</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yamaguchi</td>
<td>Hikari</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Hiroshima</td>
<td>Mitarai</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Yoshiwa</td>
<td>6</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Saizaki</td>
<td>6</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Setoda</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Kamuri</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Hoso-shima (N)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Hosono-su</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shimonose</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Shikanose</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Ehime</td>
<td>Inabari</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Hakata-shima</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iwaki-shima</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Ishu-shima</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Eno-shima</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Kagawa</td>
<td>Takami-shima</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hiro-shima (W)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kazehana</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Toyo-shima</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Myoken</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Okayama</td>
<td>Shimotsui</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Tokushima</td>
<td></td>
<td>Naruto</td>
</tr>
</tbody>
</table>

第28表によって、椎骨数のモードの頻度について採捕地別に62と63、62や63の2組に分けて示すと第49図がえられる。

第49図によると、イカノゴの椎骨数のモードが62または63を占める頻度は、淡路島周辺部に62、播磨灘以西に63が卓越することがわかる。瀬戸内海の潮流は、第3章に多少触れるが、個体群は瀬戸内海に流入する紀伊水道系水塊と若狭水道系水塊との合流点とみられ、産卵期の水温低下が最も大きいことが推察される。また個体群以西のイカノゴでは、稚魚の移動について第3章にも述べた通り、1〜2つの魚群として移動することが明らかで、東部についても同様なことが推定される。すなわち、東部の産卵場は散在所に散在することが第50図のように浜田（1966）が報告し、さらに1965年の岡山県水産試験場との共同調査では、個体群に散発群があり、稚魚が東部に向かって移動することが明らかとなった。
Fig. 49. Geographical distribution of fish having the different mode of vertebral numbers, 62 and 63. Soft circles, 62; crosses, 63.
第49図の脊椎骨数モードの頻度分布図と第50図を比較すると、第50図の淡路島周辺の産卵場は紀伊水道を通じて外洋の影響が強く、偏卵期水温が高目でイカノギ脊椎骨数モードは62であるが、備讃瀬戸産卵場は産卵期の水温低下が大きいため63にモードをもつ魚群が卓越する。したがって瀬戸内海東部では淡路島周辺部の脊椎骨数モード62群と偏卵瀬戸部、備讃瀬戸の脊椎骨数63群とに大別されるよう。 第2項 瀬戸内海の県別漁獲統計による魚群の推定 第29表は、農林水産統計（1954—1964）に基づく瀬戸内海各府県の年別イカノギ漁獲量である。

Table 29. Annual catches of sand-lance in the various prefectures facing to the Seto Inland Sea. Unit: ton.

<table>
<thead>
<tr>
<th>Year</th>
<th>Wakayama</th>
<th>Osaka</th>
<th>Hyogo</th>
<th>Okayama</th>
<th>Hiroshima</th>
<th>Yamaguchi</th>
<th>Toku-shima</th>
<th>Kagawa</th>
<th>Ehime</th>
<th>Fukuoka</th>
<th>Oita</th>
</tr>
</thead>
<tbody>
<tr>
<td>1953</td>
<td>—</td>
<td>83</td>
<td>16,646</td>
<td>2,573</td>
<td>555</td>
<td>38</td>
<td>747</td>
<td>2,805</td>
<td>833</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'54</td>
<td>—</td>
<td>4</td>
<td>3,630</td>
<td>1,451</td>
<td>444</td>
<td>4</td>
<td>15</td>
<td>1,856</td>
<td>450</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'55</td>
<td>—</td>
<td>11,295</td>
<td>1,676</td>
<td>404</td>
<td>0</td>
<td>169</td>
<td>3,188</td>
<td>784</td>
<td>—</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>'56</td>
<td>—</td>
<td>4</td>
<td>13,613</td>
<td>2,209</td>
<td>308</td>
<td>143</td>
<td>30</td>
<td>2,370</td>
<td>885</td>
<td>—</td>
<td>11</td>
</tr>
<tr>
<td>'57</td>
<td>—</td>
<td>0</td>
<td>11,164</td>
<td>1,410</td>
<td>478</td>
<td>4</td>
<td>98</td>
<td>2,171</td>
<td>386</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'58</td>
<td>—</td>
<td>30</td>
<td>17,623</td>
<td>1,554</td>
<td>566</td>
<td>15</td>
<td>93</td>
<td>2,695</td>
<td>335</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>'59</td>
<td>—</td>
<td>12,243</td>
<td>1,251</td>
<td>985</td>
<td>22</td>
<td>65</td>
<td>2,143</td>
<td>635</td>
<td>6</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>'60</td>
<td>—</td>
<td>10,121</td>
<td>366</td>
<td>777</td>
<td>41</td>
<td>41</td>
<td>1,576</td>
<td>584</td>
<td>9</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'61</td>
<td>—</td>
<td>1</td>
<td>28,153</td>
<td>737</td>
<td>672</td>
<td>17</td>
<td>228</td>
<td>4,196</td>
<td>1,362</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'62</td>
<td>—</td>
<td>8,896</td>
<td>312</td>
<td>388</td>
<td>51</td>
<td>1</td>
<td>2,756</td>
<td>847</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'63</td>
<td>—</td>
<td>22,036</td>
<td>1,032</td>
<td>592</td>
<td>32</td>
<td>199</td>
<td>2,211</td>
<td>240</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

イカノギ漁獲量は、各年のイカノギ発生量によって増減することは当然であるが、漁具、漁期、漁場、気象、販売価格などによっても強く影響を受けるであろう。したがって、農林水産統計をそのまま使用することは、
とついては、かなり問題がありそうに思われるが、ここでは統計資料をそのまま引用して、これら各府県間の漁獲変動を捉えることとした。第30表は、1961年を基準として増減の傾向を示し、各年間のイ
カナノ漁獲量について、各年の漁獲量が、その前年に比較して増加または漁のばあいを -1 とし、どちらも一方が増、他の方が漁のばあいを -1 として集計した。

Table 30. Correlation table of the annual sand-lance catches among the
prefectures concerned.

<table>
<thead>
<tr>
<th></th>
<th>Hyogo</th>
<th>Okayama</th>
<th>Hiroshima</th>
<th>Yamaguchi</th>
<th>Tokushima</th>
<th>Kagawa</th>
<th>Ehime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyogo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Okayama</td>
<td>+ 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hiroshima</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yamaguchi</td>
<td>- 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tokushima</td>
<td>+ 4</td>
<td>+ 4</td>
<td></td>
<td>0</td>
<td>- 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kagawa</td>
<td>+ 6</td>
<td>+ 6</td>
<td>0</td>
<td>- 2</td>
<td>+ 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ehime</td>
<td>+ 4</td>
<td>+ 4</td>
<td>- 2</td>
<td>0</td>
<td>+ 2</td>
<td>+ 4</td>
<td></td>
</tr>
</tbody>
</table>

第30表によると兵庫県、岡山県では、増減の傾向が完全に一致し、さらにこれら両県は香川県とも密接な関係を示すが、これは前章で述べたことに一致する。しかし、岡山県と隣接する広島県は、他県との相関が
みられない。徳島県、兵庫、香川両県と相関を示すが、山口県とは逆相関を示す。また愛媛県は、兵庫、
岡山両県と相関を示し、後の推移の動向と一致するようで興味深い。すなわち漁獲統計からみると、瀬戸内海
のイカナノ群は、(1)兵庫、岡山、(2)香川、(3)徳島、(4)広島、(5)山口の5群に大別されよう。

第3項 尾道付近のイカナノ脊椎骨数の変異と水温についての予備的検討

尾道市付近には、主なイカナノ漁場が3箇所あり（幸崎、中瀬、立花）、そのうち、立花、中瀬漁場は尾
道市の吉野漁業協同組合が使用し、年によっては、他県からの出漁もみられる。また幸崎漁場は、三原市幸崎
漁業協同組合が使用するが、吉野漁業協同組合でも入漁することがある。したがって、1948年から1953年ま
で尾道市吉野漁業協同組合で購入した資料には、これら3漁場のイカナノが含まれているわけで、とくに漁
場別の区別をしなかった。しかし、1954年以降では、これら材料の取り扱いに注意して供試魚は漁場別に区
分し、その環境に対応した特性の解明に努めた。

3つの漁場別に脊椎骨数のモードを探ると、中瀬漁場で捕獲したものは62、63が相対するものを示す。
これら3漁場のイカナノ資料のうち、年令整定を行なった資料から漁場別に各年のイカナノ脊椎骨数を集
計すると、第31表に示すようになる。

第31表から漁場別に、各年級の脊椎骨数変異の百分率および平均骨数を図示すると、第51、52図のように
なる。

第51図によると、幸崎漁場と立花漁場とで漁獲したイカナノの脊椎骨数は、きわめて似た百分率を示す
が、中瀬漁場のイカナノは幾分異なったことがわかる。また第52図から、脊椎骨数の年々の推移をみると、各
漁場ともに年令の変動の様相は似た傾向を示すが、中瀬漁場のものは、平均値が幾分他の漁場を下回る。このこ
とは、幸崎と立花漁場とのイカナノは、産卵環境が酷似するが、中瀬漁場のイカナノは、これら2漁場と産
卵環境を幾分異なるものと推測される。かつて藤田（1949）らにしたがって対称度を漁場別に示す第
53図のようである。これから、イカナノ魚群の混合について判断すると、E ≥ 0.4 が過半数を占め、漁場間
の混ざは大きいことを物語る。
Table 31. Yearly changes of the composition of vertebral numbers, mean value, at the fishing grounds of Saizaki, Nakaze and Tachibana.

<table>
<thead>
<tr>
<th>Year</th>
<th>No. of vertebrae</th>
<th>58</th>
<th>59</th>
<th>60</th>
<th>61</th>
<th>62</th>
<th>63</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>1949</td>
<td>Fishing Ground</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Saizaki</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1950</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1951</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1952</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1953</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1954</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1955</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1956</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1957</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1958</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1960</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1964</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tachibana</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1959</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1961</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1962</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1963</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nakase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1952</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1953</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1954</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1955</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1956</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1957</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1958</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1960</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1963</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
standard deviation, coefficient of variation and E-value of the specimens caught

Remarks: $E = \frac{\text{mean value} - \text{mode}}{\text{standard deviation}}$

<table>
<thead>
<tr>
<th></th>
<th>65</th>
<th>66</th>
<th>67</th>
<th>No.</th>
<th>A. V.</th>
<th>S. D.</th>
<th>C. V.</th>
<th>E-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>62.92±0.12</td>
<td>0.87±0.08</td>
<td>1.39±0.13</td>
<td>0.09</td>
</tr>
<tr>
<td>4(1.22)</td>
<td></td>
<td></td>
<td></td>
<td>327</td>
<td>62.76±0.04</td>
<td>0.77±0.03</td>
<td>1.23±0.04</td>
<td>0.31</td>
</tr>
<tr>
<td>3(1.34)</td>
<td></td>
<td></td>
<td></td>
<td>224</td>
<td>62.74±0.04</td>
<td>0.84±0.03</td>
<td>1.34±0.04</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td>62.57±0.13</td>
<td>0.90±0.09</td>
<td>1.44±0.15</td>
<td>0.63</td>
</tr>
<tr>
<td>4(1.68)</td>
<td></td>
<td></td>
<td></td>
<td>238</td>
<td>62.73±0.04</td>
<td>0.86±0.03</td>
<td>1.37±0.04</td>
<td>0.32</td>
</tr>
<tr>
<td>15(0.95)</td>
<td>2(0.13)</td>
<td></td>
<td></td>
<td>1,582</td>
<td>62.64±0.02</td>
<td>0.88±0.01</td>
<td>1.41±0.02</td>
<td>0.41</td>
</tr>
<tr>
<td>8(0.77)</td>
<td></td>
<td></td>
<td></td>
<td>1,046</td>
<td>62.59±0.02</td>
<td>0.85±0.01</td>
<td>1.36±0.02</td>
<td>0.48</td>
</tr>
<tr>
<td>35(1.12)</td>
<td>1(0.03)</td>
<td></td>
<td></td>
<td>3,124</td>
<td>62.60±0.01</td>
<td>0.86±0.01</td>
<td>1.37±0.01</td>
<td>0.46</td>
</tr>
<tr>
<td>20(1.01)</td>
<td></td>
<td></td>
<td></td>
<td>1,981</td>
<td>62.50±0.01</td>
<td>0.91±0.01</td>
<td>1.46±0.02</td>
<td>0.55</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td>1,000</td>
<td>62.41±0.02</td>
<td>0.97±0.02</td>
<td>1.55±0.02</td>
<td>0.61</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>62.78±0.05</td>
<td>0.78±0.04</td>
<td>1.25±0.06</td>
<td>0.28</td>
</tr>
<tr>
<td>4(1.72)</td>
<td></td>
<td></td>
<td></td>
<td>232</td>
<td>62.77±0.04</td>
<td>0.89±0.03</td>
<td>1.42±0.05</td>
<td>0.26</td>
</tr>
<tr>
<td>1(0.32)</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>62.80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>311</td>
<td>62.63±0.04</td>
<td>0.91±0.35</td>
<td>1.46±0.03</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>62.55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11(1.30)</td>
<td>1(0.12)</td>
<td></td>
<td></td>
<td>849</td>
<td>62.58±0.02</td>
<td>0.84±0.01</td>
<td>1.34±0.02</td>
<td>0.50</td>
</tr>
<tr>
<td>10(0.67)</td>
<td>1(0.07)</td>
<td></td>
<td></td>
<td>1,499</td>
<td>62.63±0.02</td>
<td>0.86±0.01</td>
<td>1.37±0.02</td>
<td>0.43</td>
</tr>
<tr>
<td>19(0.73)</td>
<td></td>
<td></td>
<td></td>
<td>2,604</td>
<td>62.62±0.01</td>
<td>0.82±0.01</td>
<td>1.31±0.01</td>
<td>0.46</td>
</tr>
<tr>
<td>25(1.43)</td>
<td></td>
<td></td>
<td></td>
<td>1,746</td>
<td>62.68±0.02</td>
<td>0.91±0.01</td>
<td>1.46±0.02</td>
<td>0.35</td>
</tr>
<tr>
<td>34(0.91)</td>
<td>1(0.03)</td>
<td></td>
<td></td>
<td>3,731</td>
<td>62.46±0.01</td>
<td>0.93±0.01</td>
<td>1.49±0.01</td>
<td>0.58</td>
</tr>
<tr>
<td>10(0.53)</td>
<td></td>
<td></td>
<td></td>
<td>1,875</td>
<td>62.50±0.01</td>
<td>0.88±0.01</td>
<td>1.41±0.02</td>
<td>0.57</td>
</tr>
<tr>
<td>2(1.57)</td>
<td></td>
<td></td>
<td></td>
<td>127</td>
<td>62.60±0.05</td>
<td>0.86±0.04</td>
<td>1.36±0.06</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>117</td>
<td>62.62±0.05</td>
<td>0.80±0.04</td>
<td>1.28±0.06</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td>62.50±0.04</td>
<td>0.80±0.03</td>
<td>1.28±0.04</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45</td>
<td>62.36±0.08</td>
<td>0.79±0.06</td>
<td>1.27±0.09</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
<td>62.50±0.11</td>
<td>0.82±0.07</td>
<td>1.32±0.01</td>
<td>0.61</td>
</tr>
<tr>
<td>5(0.57)</td>
<td></td>
<td></td>
<td></td>
<td>880</td>
<td>62.53±0.02</td>
<td>0.86±0.01</td>
<td>1.38±0.02</td>
<td>0.62</td>
</tr>
<tr>
<td>10(0.78)</td>
<td>1(0.08)</td>
<td></td>
<td></td>
<td>1,291</td>
<td>62.60±0.02</td>
<td>0.84±0.01</td>
<td>1.34±0.02</td>
<td>0.71</td>
</tr>
<tr>
<td>26(0.77)</td>
<td></td>
<td></td>
<td></td>
<td>3,384</td>
<td>62.57±0.01</td>
<td>0.82±0.01</td>
<td>1.31±0.01</td>
<td>0.69</td>
</tr>
<tr>
<td>7(0.66)</td>
<td>1(0.09)</td>
<td></td>
<td></td>
<td>1,060</td>
<td>62.40±0.02</td>
<td>0.94±0.01</td>
<td>1.50±0.02</td>
<td>0.43</td>
</tr>
<tr>
<td>12(0.72)</td>
<td></td>
<td></td>
<td></td>
<td>1,675</td>
<td>62.41±0.02</td>
<td>0.89±0.01</td>
<td>1.43±0.02</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23</td>
<td>62.26±0.13</td>
<td>0.94±0.09</td>
<td>1.51±0.15</td>
<td>0.28</td>
</tr>
<tr>
<td>15(0.85)</td>
<td>1(0.06)</td>
<td></td>
<td></td>
<td>1,765</td>
<td>62.46±0.02</td>
<td>0.94±0.01</td>
<td>1.51±0.02</td>
<td>0.57</td>
</tr>
</tbody>
</table>
| 1 | | | | 100 | 62.70±0.05 | 0.74±0.04 | 1.18±0.06 | 0.40

— 63 —
Fig. 51. Yearly changes of the frequency distribution of vertebral numbers of the specimens caught at the fishing grounds of Saizaki, Nakaze and Tachibana. Solid circles, Saizaki; crosses, Nakaze; soft circles, Tachibana.
Fig. 52. Yearly changes of the mean value of vertebral numbers of the specimens caught at the fishing grounds of Saizaki, Nakaze and Tachibana. Solid circles, Saizaki; crosses, Nakaze; soft circles, Tachibana; double circles, mean value of Saizaki and Tachibana.

Fig. 53. Monthly distributions of the E-value of the specimens caught respectively at the fishing grounds of Saizaki, Nakaze and Tachibana, during years 1949-1964. Solid circles, 0-year fish; crosses, 1-year fish; soft circles, 2-year fish.

内鯛（1950）らも指摘したように，イカナゴの脊椎骨数は北高南低で，これは産卵期の水温に関係があるものとされている。内海区水産研究所尾道試験地の沿岸定時観測資料から，産卵期前後の水温を第54図に示す（ただし1956年以前は，午前10時，それ以後は，午前9時観測）。

— 65 —
Fig. 54. Annual changes of the average water temperature in January and December based on the regular coastal oceanographic observation conducted by the Onomichi Branch Station of Naikai Regional Fisheries Research Laboratory. Crosses, December; solid circles, late in December; triangles, January; soft circles, early in January.

Fig. 55. Relationship between the mean value of vertebral numbers and the water temperature early in January.

Table 32. Yearly changes of the vertebral numbers of the specimens caught at the fishing grounds of Saizaki and Tachibana.

<table>
<thead>
<tr>
<th>Year</th>
<th>No.</th>
<th>A. V.</th>
<th>S. D.</th>
<th>C. V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1949</td>
<td>258</td>
<td>62.78±0.04</td>
<td>0.89±0.03</td>
<td>1.42±0.04</td>
</tr>
<tr>
<td>50</td>
<td>337</td>
<td>62.74±0.03</td>
<td>0.78±0.02</td>
<td>1.24±0.03</td>
</tr>
<tr>
<td>51</td>
<td>539</td>
<td>62.68±0.03</td>
<td>0.89±0.02</td>
<td>1.41±0.03</td>
</tr>
<tr>
<td>52</td>
<td>32</td>
<td>62.56±0.11</td>
<td>0.90±0.08</td>
<td>1.44±0.12</td>
</tr>
<tr>
<td>53</td>
<td>1,087</td>
<td>62.61±0.02</td>
<td>0.85±0.01</td>
<td>1.35±0.02</td>
</tr>
<tr>
<td>54</td>
<td>3,081</td>
<td>62.63±0.01</td>
<td>0.89±0.01</td>
<td>1.42±0.01</td>
</tr>
<tr>
<td>55</td>
<td>3,650</td>
<td>62.61±0.01</td>
<td>0.83±0.01</td>
<td>1.33±0.01</td>
</tr>
<tr>
<td>56</td>
<td>4,870</td>
<td>62.63±0.01</td>
<td>0.88±0.01</td>
<td>1.40±0.01</td>
</tr>
<tr>
<td>57</td>
<td>5,712</td>
<td>62.47±0.01</td>
<td>0.78±0.01</td>
<td>1.25±0.01</td>
</tr>
<tr>
<td>58</td>
<td>2,875</td>
<td>62.47±0.01</td>
<td>0.91±0.01</td>
<td>1.46±0.01</td>
</tr>
<tr>
<td>62</td>
<td>127</td>
<td>62.60±0.05</td>
<td>0.86±0.04</td>
<td>1.36±0.06</td>
</tr>
<tr>
<td>63</td>
<td>117</td>
<td>62.62±0.05</td>
<td>0.80±0.04</td>
<td>1.28±0.06</td>
</tr>
<tr>
<td>64</td>
<td>300</td>
<td>62.59±0.03</td>
<td>0.81±0.02</td>
<td>1.29±0.04</td>
</tr>
</tbody>
</table>
Table 33. Result of χ^2 test among the vertebral numbers of the specimens caught at each fishing ground of Saizaki, Nakaze and Tachibana.
Soft circles, significant; crosses, non-significant.

<table>
<thead>
<tr>
<th>Year</th>
<th>Place</th>
<th>1954</th>
<th>1955</th>
<th>1956</th>
<th>1957</th>
<th>1958</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>S.</td>
<td>T.</td>
<td>N.</td>
<td>S.</td>
<td>T.</td>
</tr>
<tr>
<td>Saizaki</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tachibana</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nakaze</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

信頼度95％では，1956年は3魚種間で有意の差が認められ，その他の年では魚種間でみられなかったが，1957年では各魚種間で有意の差が認められない。このことは，水温低下が1957年に著しいことと考え合わせて興味深い。

また，1963年1月〜2月は異常寒波の影響を受け水温は急激に低下し，瀬戸内海沿岸部では，マダイ，マグロ，カレイ類，ヒラサキなどの中大魚が出現した。これら水温の急激な下降が，イカナゴ脊椎骨数に与える影響を，広島県周辺漁場イカのについて調査した。第56図は，1954，1956，1964年の採捕日ごとに平均脊椎骨数を図示したものである。この図によると，1963年のイカナゴ平均脊椎骨数は，その他の年を大きく上回る点を示し，顕著な水温低下のほかに，脊椎骨数は増加することを裏付けるものである。

脊椎骨数と水温との関係について，2，3の資料にとづき子備の検査を行なったが，個々の要因が分離できなかった。また，水温が脊椎骨数に変化をもたらすことはほぼ同様であるが，これを説明するような資料も得られなかったが，沿岸定時観測値は産卵場水温と一致しないためか逆の結果を示した。

第4項 産卵環境調査（その1） 福根漁場環境調査
前項に述べたように，三原湾に栄える漁場，中瀬，立花の各漁場間で，脊椎骨数に差がみられることがある。筆者らは，これらの漁場環境を調査し，水温と脊椎骨数との関係をもととして具体的に検討することを想定し，1954，1956〜1957，1957〜1958年の3回調査を実施した。

調査方法
調査方法は，一般海洋観測に基づき，水温，塩分，Planktonなどを調査した。なお Plankton 採集は，北原式 Plankton net で行ない，網目はXXIIIの細網である。

調査結果
調査結果は第34，35，36表に示す通りで第57，58，59節に，順次1954，1956〜1957，1957〜1958年の調査点を示す。
Table 34. Results of the oceanographic survey in

<table>
<thead>
<tr>
<th>Date</th>
<th>Time hr min</th>
<th>Position</th>
<th>Depth (m)</th>
<th>Tran. (m)</th>
<th>W. T. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 m</td>
</tr>
<tr>
<td>1954 Feb. 17</td>
<td>11:50</td>
<td>1</td>
<td>13.0</td>
<td>4.8</td>
<td>10.9</td>
</tr>
<tr>
<td></td>
<td>13:30</td>
<td>2</td>
<td>15.0</td>
<td>6.2</td>
<td>11.0</td>
</tr>
<tr>
<td></td>
<td>15:45</td>
<td>3</td>
<td>24.0</td>
<td>7.0</td>
<td>11.3</td>
</tr>
<tr>
<td>19</td>
<td>12:12</td>
<td>4</td>
<td>25.0</td>
<td>6.5</td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td>11:50</td>
<td>5</td>
<td>18.0</td>
<td>6.2</td>
<td>11.2</td>
</tr>
<tr>
<td>24</td>
<td>13:48</td>
<td>1</td>
<td>22.0</td>
<td>7.0</td>
<td>11.0</td>
</tr>
<tr>
<td></td>
<td>12:00</td>
<td>2</td>
<td>12.0</td>
<td>7.0</td>
<td>10.8</td>
</tr>
<tr>
<td></td>
<td>11:36</td>
<td>3</td>
<td>30.0</td>
<td>7.0</td>
<td>11.2</td>
</tr>
<tr>
<td>26</td>
<td>10:10</td>
<td>4</td>
<td>22.0</td>
<td>8.8</td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td>10:40</td>
<td>5</td>
<td>14.0</td>
<td>10.0</td>
<td>11.1</td>
</tr>
<tr>
<td>Mar. 3</td>
<td>9:30–9:40</td>
<td>1</td>
<td>17.2</td>
<td>7.2</td>
<td>10.5</td>
</tr>
<tr>
<td>10:20–10:31</td>
<td>2</td>
<td>10.0</td>
<td>7.2</td>
<td>11.0</td>
<td>10.8</td>
</tr>
<tr>
<td>10:49–11:00</td>
<td>3</td>
<td>25.0</td>
<td>9.0</td>
<td>11.1</td>
<td>11.0</td>
</tr>
<tr>
<td>11:41–11:53</td>
<td>4</td>
<td>25.0</td>
<td>8.5</td>
<td>11.2</td>
<td>11.0</td>
</tr>
<tr>
<td>12:06–12:12</td>
<td>5</td>
<td>8.0</td>
<td>8.0</td>
<td>11.3</td>
<td>11.2</td>
</tr>
<tr>
<td>12</td>
<td>10:00</td>
<td>1</td>
<td>11.0</td>
<td>7.0</td>
<td>10.1</td>
</tr>
<tr>
<td></td>
<td>11:00</td>
<td>2</td>
<td>10.5</td>
<td>7.0</td>
<td>10.1</td>
</tr>
<tr>
<td></td>
<td>11:30</td>
<td>3</td>
<td>30.0</td>
<td>6.5</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>13:00</td>
<td>4</td>
<td>25.0</td>
<td>7.0</td>
<td>10.4</td>
</tr>
<tr>
<td></td>
<td>13:30</td>
<td>5</td>
<td>11.0</td>
<td>7.2</td>
<td>10.6</td>
</tr>
<tr>
<td>18</td>
<td>10:10</td>
<td>1</td>
<td>15.0</td>
<td>6.2</td>
<td>10.4</td>
</tr>
<tr>
<td></td>
<td>12:10</td>
<td>2</td>
<td>15.0</td>
<td>7.2</td>
<td>10.8</td>
</tr>
<tr>
<td></td>
<td>12:22</td>
<td>3</td>
<td>26.0</td>
<td>7.2</td>
<td>10.8</td>
</tr>
<tr>
<td></td>
<td>13:10</td>
<td>4</td>
<td>25.0</td>
<td>7.1</td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td>13:30</td>
<td>5</td>
<td>13.0</td>
<td>7.1</td>
<td>11.1</td>
</tr>
<tr>
<td>24</td>
<td>10:30</td>
<td>1</td>
<td>10.0</td>
<td>5.9</td>
<td>11.6</td>
</tr>
<tr>
<td></td>
<td>11:55</td>
<td>2</td>
<td>11.5</td>
<td>6.1</td>
<td>11.7</td>
</tr>
<tr>
<td></td>
<td>13:20</td>
<td>4</td>
<td>30.0</td>
<td>7.2</td>
<td>11.8</td>
</tr>
<tr>
<td></td>
<td>13:55</td>
<td>5</td>
<td>11.0</td>
<td>7.0</td>
<td>11.7</td>
</tr>
<tr>
<td>Apr. 1</td>
<td>9:30</td>
<td>1</td>
<td>15.0</td>
<td>6.5</td>
<td>12.3</td>
</tr>
<tr>
<td>10:45</td>
<td>2</td>
<td>10.0</td>
<td>8.0</td>
<td>12.7</td>
<td>12.2</td>
</tr>
<tr>
<td>11:00</td>
<td>3</td>
<td>25.0</td>
<td>7.2</td>
<td>12.4</td>
<td>12.1</td>
</tr>
<tr>
<td>11:45</td>
<td>4</td>
<td>26.0</td>
<td>7.3</td>
<td>12.4</td>
<td>12.1</td>
</tr>
<tr>
<td>12:00</td>
<td>5</td>
<td>10.0</td>
<td>8.2</td>
<td>12.2</td>
<td>12.1</td>
</tr>
<tr>
<td>7</td>
<td>12:55</td>
<td>1</td>
<td>19.0</td>
<td>5.0</td>
<td>13.3</td>
</tr>
<tr>
<td>12:25</td>
<td>2</td>
<td>14.0</td>
<td>6.0</td>
<td>13.4</td>
<td>13.2</td>
</tr>
<tr>
<td>12:05</td>
<td>3</td>
<td>30.0</td>
<td>6.5</td>
<td>13.4</td>
<td>13.0</td>
</tr>
<tr>
<td>11:25</td>
<td>4</td>
<td>27.0</td>
<td>6.0</td>
<td>13.1</td>
<td>12.8</td>
</tr>
<tr>
<td>11:05</td>
<td>5</td>
<td>14.0</td>
<td>5.0</td>
<td>13.0</td>
<td>12.8</td>
</tr>
<tr>
<td>15</td>
<td>9:36</td>
<td>1</td>
<td>12.5</td>
<td>7.0</td>
<td>14.0</td>
</tr>
<tr>
<td>10:35</td>
<td>2</td>
<td>15.0</td>
<td>8.2</td>
<td>14.0</td>
<td>13.6</td>
</tr>
<tr>
<td>10:50</td>
<td>3</td>
<td>30.0</td>
<td>8.2</td>
<td>13.9</td>
<td>13.5</td>
</tr>
<tr>
<td>11:40</td>
<td>4</td>
<td>30.0</td>
<td>9.0</td>
<td>13.8</td>
<td>13.5</td>
</tr>
<tr>
<td>11:55</td>
<td>5</td>
<td>10.0</td>
<td>7.5</td>
<td>13.5</td>
<td>13.4</td>
</tr>
<tr>
<td>22</td>
<td>14:08</td>
<td>1</td>
<td>12.5</td>
<td>6.2</td>
<td>14.2</td>
</tr>
<tr>
<td>12:54</td>
<td>2</td>
<td>14.0</td>
<td>7.0</td>
<td>13.9</td>
<td>13.9</td>
</tr>
<tr>
<td>12:24</td>
<td>3</td>
<td>27.0</td>
<td>7.5</td>
<td>13.8</td>
<td>13.8</td>
</tr>
<tr>
<td>11:37</td>
<td>4</td>
<td>25.0</td>
<td>8.5</td>
<td>13.8</td>
<td>13.7</td>
</tr>
<tr>
<td>11:13</td>
<td>5</td>
<td>18.0</td>
<td>8.0</td>
<td>14.0</td>
<td>13.7</td>
</tr>
</tbody>
</table>
the Mihara Strait from February to July in 1954.

<table>
<thead>
<tr>
<th>Cl. (%)</th>
<th>Settling volume of plankton (m³/m³)</th>
<th>Copepoda No. / m³</th>
<th>Weather</th>
<th>Cloud</th>
<th>Winds</th>
<th>Waves</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 m</td>
<td>10 m Bottom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.96</td>
<td>17.90 18.00 3.030</td>
<td>4,194.9</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>18.02</td>
<td>18.00 18.00 2.626</td>
<td>2,019.8</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>16.10</td>
<td>18.11 18.02 2.020</td>
<td>1,099.9</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>18.04</td>
<td>18.04 18.02 1.575</td>
<td>2,787.3</td>
<td>c</td>
<td>8</td>
<td>W</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>18.04 18.02 2.104</td>
<td>5,554.1</td>
<td>"</td>
<td>9</td>
<td>"</td>
<td>2</td>
</tr>
<tr>
<td>17.98</td>
<td>17.98 17.98 2.020</td>
<td>2,650.9</td>
<td>b</td>
<td>0</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>17.98 17.98 2.777</td>
<td>1,514.8</td>
<td>"</td>
<td>0</td>
<td>"</td>
<td>1</td>
</tr>
<tr>
<td>18.02</td>
<td>18.03 18.04 0.756</td>
<td>1,465.0</td>
<td>"</td>
<td>0</td>
<td>"</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>18.04 18.04 1.019</td>
<td>2,203.4</td>
<td>c</td>
<td>—</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>18.04</td>
<td>18.04 18.05 1.298</td>
<td>2,164.0</td>
<td>"</td>
<td>10</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>17.86</td>
<td>17.83 17.81 1.469</td>
<td>1,761.4</td>
<td>b</td>
<td>0</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>17.91</td>
<td>17.91 17.91 3.184</td>
<td>4,544.5</td>
<td>"</td>
<td>0</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>18.01</td>
<td>18.01 18.03 1.697</td>
<td>3,150.9</td>
<td>"</td>
<td>0</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>17.98</td>
<td>17.98 18.04 1.575</td>
<td>3,393.2</td>
<td>"</td>
<td>0</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>18.12</td>
<td>18.08 3.048</td>
<td>3,787.1</td>
<td>"</td>
<td>0</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>17.87</td>
<td>— 17.88 3.514</td>
<td>5,756.4</td>
<td>c</td>
<td>9</td>
<td>W</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>— 17.97 6.362</td>
<td>6,362.3</td>
<td>"</td>
<td>9</td>
<td>"</td>
<td>2</td>
</tr>
<tr>
<td>17.92</td>
<td>17.96 17.92 3.199</td>
<td>5,574.6</td>
<td>"</td>
<td>9</td>
<td>NW</td>
<td>2</td>
</tr>
<tr>
<td>18.04</td>
<td>18.06 18.01 3.024</td>
<td>3,326.8</td>
<td>"</td>
<td>9</td>
<td>W</td>
<td>2</td>
</tr>
<tr>
<td>18.06</td>
<td>— 18.06 1.275</td>
<td>2,423.7</td>
<td>"</td>
<td>8</td>
<td>"</td>
<td>2</td>
</tr>
<tr>
<td>17.92</td>
<td>17.97 17.96 2.534</td>
<td>1,927.9</td>
<td>b c</td>
<td>7</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>18.02</td>
<td>17.97 18.00 1.969</td>
<td>3,282.1</td>
<td>"</td>
<td>7</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>18.01</td>
<td>18.06 18.06 2.157</td>
<td>2,302.5</td>
<td>c</td>
<td>8</td>
<td>S E</td>
<td>1</td>
</tr>
<tr>
<td>18.05</td>
<td>18.02 18.04 2.181</td>
<td>2,787.3</td>
<td>"</td>
<td>9</td>
<td>W</td>
<td>1</td>
</tr>
<tr>
<td>18.00</td>
<td>18.06 18.05 2.151</td>
<td>3,938.5</td>
<td>"</td>
<td>10</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>18.03</td>
<td>— 18.02 2.272</td>
<td>2,272.2</td>
<td>b</td>
<td>0</td>
<td>W</td>
<td>2</td>
</tr>
<tr>
<td>18.04</td>
<td>— 18.05 3.636</td>
<td>3,029.7</td>
<td>"</td>
<td>0</td>
<td>"</td>
<td>2</td>
</tr>
<tr>
<td>18.06</td>
<td>18.07 18.06 1.969</td>
<td>3,635.6</td>
<td>"</td>
<td>4</td>
<td>"</td>
<td>2</td>
</tr>
<tr>
<td>18.10</td>
<td>18.14 18.14 1.454</td>
<td>4,362.7</td>
<td>"</td>
<td>3</td>
<td>"</td>
<td>1</td>
</tr>
<tr>
<td>18.14</td>
<td>— 18.10 3.703</td>
<td>2,693.0</td>
<td>b</td>
<td>2</td>
<td>"</td>
<td>1</td>
</tr>
<tr>
<td>18.00</td>
<td>17.98 18.05 1.514</td>
<td>3,029.6</td>
<td>c</td>
<td>8</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>18.07</td>
<td>18.07 1.060</td>
<td>3,322.6</td>
<td>"</td>
<td>10</td>
<td>E</td>
<td>1</td>
</tr>
<tr>
<td>18.07</td>
<td>18.10 1.030</td>
<td>3,029.6</td>
<td>"</td>
<td>10</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>18.09</td>
<td>18.09 1.742</td>
<td>4,090.1</td>
<td>b c</td>
<td>7</td>
<td>W</td>
<td>1</td>
</tr>
<tr>
<td>18.12</td>
<td>— 18.13 2.693</td>
<td>2,356.4</td>
<td>"</td>
<td>7</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>17.95</td>
<td>17.94 17.94 6.463</td>
<td>4,645.5</td>
<td>"</td>
<td>6</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>18.00</td>
<td>18.00 18.00 2.563</td>
<td>3,262.7</td>
<td>"</td>
<td>6</td>
<td>"</td>
<td>1</td>
</tr>
<tr>
<td>18.02</td>
<td>18.02 18.02 1.666</td>
<td>1,969.3</td>
<td>"</td>
<td>5</td>
<td>"</td>
<td>1</td>
</tr>
<tr>
<td>18.06</td>
<td>18.07 18.07 2.272</td>
<td>3,029.7</td>
<td>"</td>
<td>5</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>18.07</td>
<td>18.07 18.07 2.127</td>
<td>2,423.7</td>
<td>"</td>
<td>7</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>18.02</td>
<td>17.98 17.98 3.029</td>
<td>3,332.6</td>
<td>c</td>
<td>10</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>18.07</td>
<td>18.09 18.08 2.272</td>
<td>3,635.6</td>
<td>"</td>
<td>10</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>18.07</td>
<td>18.04 18.09 1.410</td>
<td>1,671.5</td>
<td>"</td>
<td>10</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>18.11</td>
<td>18.09 18.09 1.284</td>
<td>3,029.7</td>
<td>"</td>
<td>10</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>18.11</td>
<td>18.13 18.13 3.029</td>
<td>3,029.7</td>
<td>"</td>
<td>10</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>17.87</td>
<td>— 17.93 4.271</td>
<td>9,695.0</td>
<td>"</td>
<td>10</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>17.91</td>
<td>— 18.32 3.938</td>
<td>4,241.5</td>
<td>"</td>
<td>10</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>17.91</td>
<td>18.16 18.29 2.084</td>
<td>1,939.0</td>
<td>"</td>
<td>10</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>18.13</td>
<td>18.32 18.10 1.893</td>
<td>3,181.1</td>
<td>r</td>
<td>10</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>18.17</td>
<td>18.10 17.97 2.632</td>
<td>3,029.7</td>
<td>"</td>
<td>10</td>
<td>E</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Time hr min</th>
<th>Position</th>
<th>Depth (m)</th>
<th>Tra. (m)</th>
<th>W.T. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 m</td>
</tr>
<tr>
<td>May 4</td>
<td>10:25</td>
<td>1</td>
<td>16.0</td>
<td>4.0</td>
<td>15.3</td>
</tr>
<tr>
<td></td>
<td>10:45</td>
<td>3</td>
<td>30.0</td>
<td>6.0</td>
<td>14.8</td>
</tr>
<tr>
<td></td>
<td>11:00</td>
<td>4</td>
<td>--</td>
<td>--</td>
<td>14.2</td>
</tr>
<tr>
<td></td>
<td>12:05</td>
<td>5</td>
<td>18.0</td>
<td>6.0</td>
<td>14.6</td>
</tr>
<tr>
<td>May 6</td>
<td>10:30</td>
<td>1</td>
<td>16.0</td>
<td>4.5</td>
<td>15.0</td>
</tr>
<tr>
<td></td>
<td>10:45</td>
<td>3</td>
<td>30.0</td>
<td>6.0</td>
<td>14.8</td>
</tr>
<tr>
<td></td>
<td>11:00</td>
<td>4</td>
<td>12.0</td>
<td>6.0</td>
<td>14.6</td>
</tr>
<tr>
<td></td>
<td>12:05</td>
<td>5</td>
<td>18.0</td>
<td>6.0</td>
<td>14.6</td>
</tr>
</tbody>
</table>

Table 34.
<table>
<thead>
<tr>
<th>Cl. (%)</th>
<th>Setting volume of plankton (pL/m²)</th>
<th>Copepoda</th>
<th>Weather</th>
<th>Cloud</th>
<th>Winds</th>
<th>Waves</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 m</td>
<td>10 m</td>
<td>Bottom</td>
<td></td>
<td>No. / m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.75</td>
<td></td>
<td>17.96</td>
<td>1.798</td>
<td>6,627.4</td>
<td>b</td>
<td>0</td>
</tr>
<tr>
<td>17.81</td>
<td>18.19</td>
<td>18.19</td>
<td>3.855</td>
<td>10,741.7</td>
<td>b</td>
<td>0</td>
</tr>
<tr>
<td>17.87</td>
<td>18.13</td>
<td>17.91</td>
<td>0.796</td>
<td>1,806.2</td>
<td>b</td>
<td>0</td>
</tr>
<tr>
<td>17.94</td>
<td>18.19</td>
<td>18.09</td>
<td>1.935</td>
<td>4,039.6</td>
<td>b</td>
<td>0</td>
</tr>
<tr>
<td>18.01</td>
<td>18.04</td>
<td>18.48</td>
<td>2.625</td>
<td>10,704.9</td>
<td>bc</td>
<td>5</td>
</tr>
<tr>
<td>18.13</td>
<td>18.40</td>
<td>18.40</td>
<td>2.908</td>
<td>7,877.0</td>
<td>bc</td>
<td>5</td>
</tr>
<tr>
<td>18.19</td>
<td>17.96</td>
<td>17.96</td>
<td>1.345</td>
<td>6,665.3</td>
<td>bc</td>
<td>5</td>
</tr>
<tr>
<td>17.98</td>
<td>18.19</td>
<td>18.34</td>
<td>3.768</td>
<td>6,059.4</td>
<td>bc</td>
<td>5</td>
</tr>
<tr>
<td>17.43</td>
<td>18.16</td>
<td>18.16</td>
<td>3.938</td>
<td>1,514.8</td>
<td>o</td>
<td>10</td>
</tr>
<tr>
<td>18.06</td>
<td>18.15</td>
<td>18.15</td>
<td>2.461</td>
<td>1,893.5</td>
<td>o</td>
<td>10</td>
</tr>
<tr>
<td>18.01</td>
<td>17.93</td>
<td>18.13</td>
<td>1.211</td>
<td>1,090.6</td>
<td>o</td>
<td>10</td>
</tr>
<tr>
<td>18.42</td>
<td>18.66</td>
<td>18.26</td>
<td>1.211</td>
<td>1,575.4</td>
<td>o</td>
<td>10</td>
</tr>
<tr>
<td>18.47</td>
<td>18.45</td>
<td>18.07</td>
<td>2.764</td>
<td>1,136.1</td>
<td>o</td>
<td>10</td>
</tr>
<tr>
<td>17.83</td>
<td>17.96</td>
<td></td>
<td>3.938</td>
<td>3,123.7</td>
<td>bc</td>
<td>4</td>
</tr>
<tr>
<td>17.72</td>
<td>17.71</td>
<td></td>
<td>4.241</td>
<td>5,756.4</td>
<td>bc</td>
<td>5</td>
</tr>
<tr>
<td>17.51</td>
<td>17.71</td>
<td>17.53</td>
<td>1.999</td>
<td>1,333.1</td>
<td>bc</td>
<td>5</td>
</tr>
<tr>
<td>18.06</td>
<td>17.76</td>
<td>18.08</td>
<td>2.496</td>
<td>2,496.3</td>
<td>bc</td>
<td>5</td>
</tr>
<tr>
<td>18.13</td>
<td>18.80</td>
<td></td>
<td>5.427</td>
<td>2,325.9</td>
<td>bc</td>
<td>5</td>
</tr>
<tr>
<td>17.71</td>
<td>17.97</td>
<td>17.78</td>
<td>8.331</td>
<td>8,079.2</td>
<td>bc</td>
<td>6</td>
</tr>
<tr>
<td>18.11</td>
<td>18.15</td>
<td></td>
<td>4.544</td>
<td>6,859.4</td>
<td>bc</td>
<td>6</td>
</tr>
<tr>
<td>18.47</td>
<td>18.05</td>
<td>18.29</td>
<td>2.706</td>
<td>6,463.3</td>
<td>bc</td>
<td>6</td>
</tr>
<tr>
<td>18.07</td>
<td>18.22</td>
<td>18.15</td>
<td>1.393</td>
<td>848.3</td>
<td>b</td>
<td>0</td>
</tr>
<tr>
<td>18.04</td>
<td>18.27</td>
<td></td>
<td>2.508</td>
<td>4,847.5</td>
<td>b</td>
<td>0</td>
</tr>
<tr>
<td>17.98</td>
<td>17.70</td>
<td></td>
<td>6.565</td>
<td>22,715.9</td>
<td>b</td>
<td>4</td>
</tr>
<tr>
<td>17.65</td>
<td>17.75</td>
<td></td>
<td>4.090</td>
<td>7,877.2</td>
<td>b</td>
<td>5</td>
</tr>
<tr>
<td>17.72</td>
<td>17.81</td>
<td>17.70</td>
<td>2.339</td>
<td>4,679.4</td>
<td>b</td>
<td>5</td>
</tr>
<tr>
<td>17.88</td>
<td>17.97</td>
<td>17.98</td>
<td>1.889</td>
<td>5,731.3</td>
<td>b</td>
<td>5</td>
</tr>
<tr>
<td>17.91</td>
<td>17.99</td>
<td></td>
<td>3.861</td>
<td>8,031.3</td>
<td>b</td>
<td>5</td>
</tr>
<tr>
<td>17.83</td>
<td>17.95</td>
<td>17.99</td>
<td>1.588</td>
<td>4,766.6</td>
<td>b</td>
<td>5</td>
</tr>
<tr>
<td>17.85</td>
<td>17.99</td>
<td>18.22</td>
<td>2.346</td>
<td>6,777.4</td>
<td>b</td>
<td>5</td>
</tr>
<tr>
<td>18.00</td>
<td>18.00</td>
<td></td>
<td>4.370</td>
<td>8,533.3</td>
<td>b</td>
<td>7</td>
</tr>
<tr>
<td>17.72</td>
<td>17.80</td>
<td></td>
<td>4.328</td>
<td>6,492.2</td>
<td>b</td>
<td>8</td>
</tr>
<tr>
<td>17.93</td>
<td>17.97</td>
<td>17.82</td>
<td>1.906</td>
<td>3,389.6</td>
<td>b</td>
<td>8</td>
</tr>
<tr>
<td>17.00</td>
<td>16.98</td>
<td>16.90</td>
<td>3.854</td>
<td>11,717.3</td>
<td>b</td>
<td>4</td>
</tr>
<tr>
<td>17.39</td>
<td>17.19</td>
<td></td>
<td>3.350</td>
<td>12,778.5</td>
<td>b</td>
<td>4</td>
</tr>
<tr>
<td>17.09</td>
<td>17.38</td>
<td>17.13</td>
<td>2.120</td>
<td>5,907.9</td>
<td>b</td>
<td>3</td>
</tr>
<tr>
<td>17.27</td>
<td>17.23</td>
<td>17.71</td>
<td>2.931</td>
<td>8,024.1</td>
<td>b</td>
<td>3</td>
</tr>
<tr>
<td>17.78</td>
<td>17.58</td>
<td></td>
<td>2.052</td>
<td>12,313.7</td>
<td>b</td>
<td>3</td>
</tr>
</tbody>
</table>
Table 35. Results of the oceanographic survey in the Mihara Strait from November 1956 to May 1957.

<table>
<thead>
<tr>
<th>Date</th>
<th>Time hr min</th>
<th>Station</th>
<th>Depth (m)</th>
<th>W.T (°C)</th>
<th>No. of larval sand</th>
<th>A.T (°C)</th>
<th>Weather</th>
<th>Cloud</th>
<th>Winds</th>
<th>Waves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Surface</td>
<td>Bottom</td>
<td></td>
<td></td>
<td></td>
<td>Dir.</td>
<td>Vel.</td>
</tr>
<tr>
<td>1956 Nov. 1</td>
<td>9:00~16:30</td>
<td>1</td>
<td></td>
<td>21.26</td>
<td>20.88</td>
<td>21.4</td>
<td>b</td>
<td>1</td>
<td>N</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>10:00~16:00</td>
<td>3</td>
<td>15.0</td>
<td>21.29</td>
<td>20.58</td>
<td>21.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>10:00~15:30</td>
<td>1</td>
<td>-</td>
<td>19.12</td>
<td>-</td>
<td>19.2</td>
<td>b</td>
<td>1</td>
<td>NW</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>00~15:30</td>
<td>3</td>
<td>17.0</td>
<td>19.47</td>
<td>19.15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>22</td>
<td>14:00</td>
<td>1</td>
<td>23.0</td>
<td>17.40</td>
<td>17.85</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>13:30</td>
<td>2</td>
<td>30.0</td>
<td>17.40</td>
<td>17.85</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>13:30</td>
<td>3</td>
<td>14.0</td>
<td>17.80</td>
<td>18.40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>12:00</td>
<td>4</td>
<td>13.0</td>
<td>17.60</td>
<td>18.13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>27</td>
<td>10:30~15:30</td>
<td>1</td>
<td>-</td>
<td>17.35</td>
<td>-</td>
<td>12.6</td>
<td>b</td>
<td>1</td>
<td>NW</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>10:30~15:00</td>
<td>3</td>
<td>-</td>
<td>17.69</td>
<td>17.49</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>29</td>
<td>10:00~15:30</td>
<td>1</td>
<td>-</td>
<td>16.67</td>
<td>16.83</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dec. 4</td>
<td>12:55</td>
<td>1</td>
<td>32.0</td>
<td>16.00</td>
<td>15.80</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>13:00</td>
<td>2</td>
<td>30.0</td>
<td>16.10</td>
<td>15.60</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>12:20</td>
<td>3</td>
<td>15.0</td>
<td>16.30</td>
<td>16.40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>12:35</td>
<td>4</td>
<td>18.0</td>
<td>16.40</td>
<td>16.40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>11:40</td>
<td>5</td>
<td>12.0</td>
<td>16.80</td>
<td>16.70</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>11:25</td>
<td>6</td>
<td>25.0</td>
<td>16.80</td>
<td>16.60</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Date</td>
<td>Time hr min</td>
<td>Station</td>
<td>Depth (m)</td>
<td>W.T. (°C)</td>
<td>Cl. %</td>
<td>Plankton S.V. (ml/m³)</td>
<td>D.V. (ml/m³)</td>
<td>Copepoda</td>
<td>Decapoda</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>---------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------</td>
<td>----------------------</td>
<td>--------------</td>
<td>-----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Feb. 11</td>
<td>10:15</td>
<td>1</td>
<td>30.0</td>
<td>9.70</td>
<td>10.30</td>
<td>0.849</td>
<td>0.531</td>
<td>2,494</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10:20</td>
<td>2</td>
<td>15.0</td>
<td>9.70</td>
<td>10.10</td>
<td>1.676</td>
<td>1.103</td>
<td>4,268</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11:25</td>
<td>3</td>
<td>15.0</td>
<td>10.10</td>
<td>10.50</td>
<td>0.353</td>
<td>2.122</td>
<td>3,515</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11:30</td>
<td>4</td>
<td>10.0</td>
<td>9.90</td>
<td>10.40</td>
<td>2.069</td>
<td>2.069</td>
<td>2,674</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12:45</td>
<td>5</td>
<td>8.0</td>
<td>10.20</td>
<td>10.60</td>
<td>1.397</td>
<td>0.751</td>
<td>3,183</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12:25</td>
<td>6</td>
<td>13.0</td>
<td>10.20</td>
<td>10.70</td>
<td>3.714</td>
<td>1.910</td>
<td>4,541</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar. 13</td>
<td>10:40</td>
<td>1</td>
<td>30.0</td>
<td>10.20</td>
<td>10.10</td>
<td>1.350</td>
<td>0.800</td>
<td>1,910</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10:55</td>
<td>2</td>
<td>13.0</td>
<td>10.10</td>
<td>9.90</td>
<td>1.870</td>
<td>1.150</td>
<td>3,077</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11:30</td>
<td>3</td>
<td>15.0</td>
<td>10.41</td>
<td>10.42</td>
<td>2.060</td>
<td>0.060</td>
<td>3,990</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11:20</td>
<td>4</td>
<td>7.0</td>
<td>10.31</td>
<td>10.31</td>
<td>2.770</td>
<td>2.640</td>
<td>5,093</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13:05</td>
<td>5</td>
<td>8.0</td>
<td>10.40</td>
<td>10.40</td>
<td>2.980</td>
<td>2.980</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12:35</td>
<td>6</td>
<td>18.0</td>
<td>10.50</td>
<td>10.45</td>
<td>1.610</td>
<td>1.590</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr. 12</td>
<td>9:35</td>
<td>1</td>
<td>25.0</td>
<td>13.13</td>
<td>13.13</td>
<td>3.119</td>
<td>1.528</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9:45</td>
<td>2</td>
<td>13.0</td>
<td>13.13</td>
<td>13.13</td>
<td>3.035</td>
<td>1.697</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10:25</td>
<td>3</td>
<td>13.0</td>
<td>12.92</td>
<td>12.92</td>
<td>2.967</td>
<td>2.693</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10:15</td>
<td>4</td>
<td>11.0</td>
<td>12.92</td>
<td>12.92</td>
<td>4.109</td>
<td>2.315</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11:50</td>
<td>5</td>
<td>10.0</td>
<td>12.75</td>
<td>12.75</td>
<td>3.915</td>
<td>3.183</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11:30</td>
<td>6</td>
<td>20.0</td>
<td>12.94</td>
<td>12.84</td>
<td>3.183</td>
<td>2.223</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May 16</td>
<td>9:20</td>
<td>1</td>
<td>30.0</td>
<td>15.40</td>
<td>15.30</td>
<td>3.380</td>
<td>2.273</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9:35</td>
<td>2</td>
<td>20.0</td>
<td>15.40</td>
<td>15.30</td>
<td>4.154</td>
<td>2.848</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10:10</td>
<td>3</td>
<td>10.0</td>
<td>15.20</td>
<td>15.40</td>
<td>3.819</td>
<td>2.829</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10:55</td>
<td>4</td>
<td>10.0</td>
<td>15.20</td>
<td>15.40</td>
<td>2.132</td>
<td>1.909</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12:10</td>
<td>5</td>
<td>9.0</td>
<td>15.20</td>
<td>15.20</td>
<td>2.334</td>
<td>1.788</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12:30</td>
<td>6</td>
<td>18.0</td>
<td>15.10</td>
<td>14.50</td>
<td>1.591</td>
<td>1.061</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jun. 10</td>
<td>9:45</td>
<td>1</td>
<td>30.0</td>
<td>17.70</td>
<td>17.60</td>
<td>2.315</td>
<td>1.592</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9:50</td>
<td>2</td>
<td>18.0</td>
<td>17.65</td>
<td>17.60</td>
<td>1.945</td>
<td>1.415</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10:10</td>
<td>3</td>
<td>10.0</td>
<td>17.35</td>
<td>17.40</td>
<td>1.910</td>
<td>1.228</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10:30</td>
<td>4</td>
<td>13.0</td>
<td>17.40</td>
<td>17.40</td>
<td>1.469</td>
<td>1.224</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12:15</td>
<td>5</td>
<td>10.0</td>
<td>17.20</td>
<td>17.00</td>
<td>2.122</td>
<td>2.122</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12:30</td>
<td>6</td>
<td>21.0</td>
<td>16.90</td>
<td>16.70</td>
<td>1.364</td>
<td>1.213</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

--- 74 ---
<table>
<thead>
<tr>
<th>Cirripedia</th>
<th>Nauplius</th>
<th>Poden</th>
<th>Cyclidea</th>
<th>Noctiluca</th>
<th>Oikopleura</th>
<th>Bivalvia</th>
<th>Polychaeta</th>
<th>Gastroopoda</th>
<th>Sagittoidia</th>
<th>Hydrida</th>
<th>Ophiuroidea</th>
</tr>
</thead>
<tbody>
<tr>
<td>319</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>870</td>
<td>424</td>
<td>190</td>
<td>42</td>
<td>42</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>636</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1,358</td>
<td>976</td>
<td>297</td>
<td>42</td>
<td>42</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>721</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2,037</td>
<td>1,145</td>
<td>381</td>
<td>42</td>
<td>42</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>763</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1,591</td>
<td>318</td>
<td>763</td>
<td>63</td>
<td>—</td>
<td>127</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>572</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1,527</td>
<td>1,273</td>
<td>190</td>
<td>63</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>891</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2,583</td>
<td>1,994</td>
<td>424</td>
<td>42</td>
<td>84</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1,451</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>357</td>
<td>127</td>
<td>51</td>
<td>51</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2,069</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>509</td>
<td>382</td>
<td>95</td>
<td>32</td>
<td>64</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1,830</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1,194</td>
<td>557</td>
<td>80</td>
<td>—</td>
<td>80</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2,355</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>637</td>
<td>509</td>
<td>318</td>
<td>64</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2,483</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1,528</td>
<td>1,401</td>
<td>318</td>
<td>64</td>
<td>127</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2,368</td>
<td>42</td>
<td>—</td>
<td>—</td>
<td>1,740</td>
<td>1,019</td>
<td>85</td>
<td>170</td>
<td>127</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>828</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>361</td>
<td>233</td>
<td>64</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>955</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>637</td>
<td>424</td>
<td>106</td>
<td>35</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1,146</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1,104</td>
<td>722</td>
<td>212</td>
<td>212</td>
<td>42</td>
<td>42</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1,910</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>637</td>
<td>455</td>
<td>91</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1,512</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1,194</td>
<td>875</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1,071</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>810</td>
<td>492</td>
<td>405</td>
<td>29</td>
<td>58</td>
<td>29</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>917</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>25</td>
<td>127</td>
<td>153</td>
<td>25</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2,829</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>212</td>
<td>212</td>
<td>141</td>
<td>141</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3,395</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>354</td>
<td>—</td>
<td>212</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2,455</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>273</td>
<td>45</td>
<td>273</td>
<td>136</td>
<td>45</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3,581</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>398</td>
<td>398</td>
<td>159</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1,867</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>810</td>
<td>492</td>
<td>405</td>
<td>29</td>
<td>58</td>
<td>29</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2,496</td>
<td>76</td>
<td>—</td>
<td>—</td>
<td>102</td>
<td>331</td>
<td>178</td>
<td>102</td>
<td>204</td>
<td>51</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1,995</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>85</td>
<td>424</td>
<td>170</td>
<td>42</td>
<td>212</td>
<td>42</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2,253</td>
<td>98</td>
<td>—</td>
<td>—</td>
<td>196</td>
<td>245</td>
<td>245</td>
<td>—</td>
<td>147</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2,992</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>58</td>
<td>405</td>
<td>694</td>
<td>—</td>
<td>116</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2,355</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>64</td>
<td>382</td>
<td>127</td>
<td>64</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2,165</td>
<td>32</td>
<td>—</td>
<td>—</td>
<td>95</td>
<td>235</td>
<td>235</td>
<td>32</td>
<td>191</td>
<td>32</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1,495</td>
<td>28</td>
<td>—</td>
<td>—</td>
<td>637</td>
<td>1,716</td>
<td>415</td>
<td>28</td>
<td>332</td>
<td>55</td>
<td>—</td>
<td>332</td>
</tr>
<tr>
<td>2,057</td>
<td>49</td>
<td>49</td>
<td>—</td>
<td>686</td>
<td>1,371</td>
<td>147</td>
<td>196</td>
<td>147</td>
<td>—</td>
<td>—</td>
<td>196</td>
</tr>
<tr>
<td>2,910</td>
<td>45</td>
<td>—</td>
<td>—</td>
<td>273</td>
<td>664</td>
<td>45</td>
<td>136</td>
<td>91</td>
<td>—</td>
<td>—</td>
<td>91</td>
</tr>
<tr>
<td>2,455</td>
<td>147</td>
<td>—</td>
<td>—</td>
<td>98</td>
<td>930</td>
<td>245</td>
<td>49</td>
<td>243</td>
<td>—</td>
<td>—</td>
<td>196</td>
</tr>
<tr>
<td>3,651</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>53</td>
<td>1,114</td>
<td>371</td>
<td>212</td>
<td>106</td>
<td>—</td>
<td>—</td>
<td>159</td>
</tr>
<tr>
<td>3,035</td>
<td>49</td>
<td>—</td>
<td>—</td>
<td>334</td>
<td>441</td>
<td>49</td>
<td>49</td>
<td>98</td>
<td>147</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>7,245</td>
<td>61</td>
<td>—</td>
<td>—</td>
<td>606</td>
<td>728</td>
<td>485</td>
<td>61</td>
<td>424</td>
<td>121</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>7,941</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>804</td>
<td>838</td>
<td>871</td>
<td>168</td>
<td>469</td>
<td>34</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>7,356</td>
<td>71</td>
<td>—</td>
<td>—</td>
<td>778</td>
<td>900</td>
<td>424</td>
<td>141</td>
<td>424</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5,220</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>255</td>
<td>764</td>
<td>255</td>
<td>—</td>
<td>446</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4,173</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>283</td>
<td>566</td>
<td>778</td>
<td>141</td>
<td>141</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4,456</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>212</td>
<td>495</td>
<td>424</td>
<td>71</td>
<td>212</td>
<td>35</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1,794</td>
<td>58</td>
<td>—</td>
<td>—</td>
<td>926</td>
<td>695</td>
<td>124</td>
<td>203</td>
<td>555</td>
<td>58</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2,051</td>
<td>71</td>
<td>—</td>
<td>—</td>
<td>717</td>
<td>717</td>
<td>424</td>
<td>—</td>
<td>424</td>
<td>71</td>
<td>35</td>
<td>—</td>
</tr>
<tr>
<td>1,974</td>
<td>127</td>
<td>—</td>
<td>—</td>
<td>637</td>
<td>446</td>
<td>191</td>
<td>—</td>
<td>573</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1,420</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>544</td>
<td>196</td>
<td>686</td>
<td>—</td>
<td>98</td>
<td>—</td>
<td>—</td>
<td>98</td>
</tr>
<tr>
<td>2,476</td>
<td>71</td>
<td>—</td>
<td>—</td>
<td>141</td>
<td>566</td>
<td>354</td>
<td>71</td>
<td>283</td>
<td>71</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1,607</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>50</td>
<td>846</td>
<td>273</td>
<td>152</td>
<td>61</td>
<td>61</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

75
Table 36. Results of the oceanographic survey in the Mihara Strait from December, 1957 to December, 1958.

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>St.</th>
<th>Depth (m)</th>
<th>Tra.</th>
<th>W. T.</th>
<th>Plankton</th>
<th>Settling volume</th>
<th>Displ. volume</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1957</td>
<td>Dec. 25</td>
<td>11:25</td>
<td>18.0</td>
<td>3.3</td>
<td>13.9</td>
<td>13.9</td>
<td>17.99</td>
<td>2.865</td>
</tr>
<tr>
<td></td>
<td>11:00</td>
<td>2</td>
<td>15.0</td>
<td>2.9</td>
<td>13.9</td>
<td>13.9</td>
<td>18.16</td>
<td>2.706</td>
</tr>
<tr>
<td></td>
<td>10:10</td>
<td>3</td>
<td>8.3</td>
<td>3.5</td>
<td>14.0</td>
<td>14.0</td>
<td>18.00</td>
<td>7.746</td>
</tr>
<tr>
<td></td>
<td>11:15</td>
<td>1</td>
<td>20.0</td>
<td>4.0</td>
<td>14.2</td>
<td>14.3</td>
<td>18.33</td>
<td>2.515</td>
</tr>
<tr>
<td></td>
<td>10:30</td>
<td>2</td>
<td>13.0</td>
<td>3.5</td>
<td>14.3</td>
<td>14.2</td>
<td>18.34</td>
<td>8.290</td>
</tr>
<tr>
<td></td>
<td>9:30</td>
<td>3</td>
<td>6.0</td>
<td>3.9</td>
<td>14.3</td>
<td>14.5</td>
<td>18.26</td>
<td>3.873</td>
</tr>
<tr>
<td>'58 Jan. 7</td>
<td>15:40</td>
<td>1</td>
<td>16.0</td>
<td>4.0</td>
<td>12.4</td>
<td>12.4</td>
<td>18.45</td>
<td>4.244</td>
</tr>
<tr>
<td></td>
<td>15:05</td>
<td>2</td>
<td>18.0</td>
<td>5.5</td>
<td>13.2</td>
<td>13.2</td>
<td>18.38</td>
<td>5.252</td>
</tr>
<tr>
<td></td>
<td>10:10</td>
<td>3</td>
<td>12.0</td>
<td>3.2</td>
<td>13.15</td>
<td>13.1</td>
<td>18.40</td>
<td>4.191</td>
</tr>
<tr>
<td></td>
<td>12:15</td>
<td>1</td>
<td>25.0</td>
<td>5.0</td>
<td>11.4</td>
<td>11.2</td>
<td>18.00</td>
<td>3.077</td>
</tr>
<tr>
<td></td>
<td>11:50</td>
<td>2</td>
<td>20.0</td>
<td>5.0</td>
<td>11.8</td>
<td>11.6</td>
<td>17.93</td>
<td>2.984</td>
</tr>
<tr>
<td></td>
<td>11:00</td>
<td>3</td>
<td>13.0</td>
<td>5.0</td>
<td>12.0</td>
<td>12.0</td>
<td>18.01</td>
<td>4.011</td>
</tr>
<tr>
<td>Feb. 3</td>
<td>12:55</td>
<td>1</td>
<td>25.0</td>
<td>5.7</td>
<td>10.5</td>
<td>10.6</td>
<td>18.48</td>
<td>5.055</td>
</tr>
<tr>
<td></td>
<td>12:10</td>
<td>2</td>
<td>11.0</td>
<td>5.8</td>
<td>11.0</td>
<td>11.0</td>
<td>18.39</td>
<td>9.549</td>
</tr>
<tr>
<td></td>
<td>11:07</td>
<td>3</td>
<td>8.0</td>
<td>6.0</td>
<td>11.2</td>
<td>11.3</td>
<td>18.41</td>
<td>12.732</td>
</tr>
<tr>
<td></td>
<td>12:15</td>
<td>1</td>
<td>25.0</td>
<td>5.0</td>
<td>10.3</td>
<td>10.1</td>
<td>17.91</td>
<td>5.570</td>
</tr>
<tr>
<td></td>
<td>11:45</td>
<td>2</td>
<td>12.0</td>
<td>5.8</td>
<td>10.4</td>
<td>10.3</td>
<td>18.03</td>
<td>7.713</td>
</tr>
<tr>
<td></td>
<td>11:00</td>
<td>3</td>
<td>12.0</td>
<td>5.3</td>
<td>10.3</td>
<td>10.2</td>
<td>18.33</td>
<td>7.427</td>
</tr>
<tr>
<td>Mar. 6</td>
<td>11:45</td>
<td>1</td>
<td>25.0</td>
<td>3.8</td>
<td>10.1</td>
<td>10.0</td>
<td>18.31</td>
<td>3.875</td>
</tr>
<tr>
<td></td>
<td>11:20</td>
<td>2</td>
<td>18.0</td>
<td>5.1</td>
<td>10.5</td>
<td>10.3</td>
<td>18.39</td>
<td>7.003</td>
</tr>
<tr>
<td></td>
<td>10:35</td>
<td>3</td>
<td>13.0</td>
<td>5.6</td>
<td>10.5</td>
<td>10.3</td>
<td>18.68</td>
<td>5.570</td>
</tr>
<tr>
<td>Apr. 18</td>
<td>10:55</td>
<td>1</td>
<td>25.0</td>
<td>5.5</td>
<td>12.9</td>
<td>12.4</td>
<td>18.16</td>
<td>12.229</td>
</tr>
<tr>
<td></td>
<td>12:30</td>
<td>2</td>
<td>20.0</td>
<td>6.0</td>
<td>12.9</td>
<td>13.0</td>
<td>18.42</td>
<td>11.936</td>
</tr>
<tr>
<td></td>
<td>13:20</td>
<td>3</td>
<td>9.0</td>
<td>5.3</td>
<td>12.9</td>
<td>13.0</td>
<td>18.41</td>
<td>11.935</td>
</tr>
<tr>
<td>Dec. 18</td>
<td>10:00</td>
<td>1</td>
<td>24.0</td>
<td>4.3</td>
<td>15.6</td>
<td>15.4</td>
<td>18.11</td>
<td>24.987</td>
</tr>
<tr>
<td></td>
<td>10:15</td>
<td>2</td>
<td>10.5</td>
<td>4.8</td>
<td>15.8</td>
<td>15.7</td>
<td>18.23</td>
<td>12.096</td>
</tr>
<tr>
<td></td>
<td>10:35</td>
<td>3</td>
<td>18.0</td>
<td>5.2</td>
<td>15.9</td>
<td>15.8</td>
<td>18.19</td>
<td>5.659</td>
</tr>
<tr>
<td></td>
<td>11:00</td>
<td>1</td>
<td>18.0</td>
<td>5.2</td>
<td>14.6</td>
<td>14.4</td>
<td>18.09</td>
<td>30.484</td>
</tr>
<tr>
<td></td>
<td>10:00</td>
<td>2</td>
<td>15.0</td>
<td>5.5</td>
<td>15.3</td>
<td>15.2</td>
<td>18.23</td>
<td>6.656</td>
</tr>
<tr>
<td></td>
<td>10:30</td>
<td>3</td>
<td>11.0</td>
<td>5.5</td>
<td>15.4</td>
<td>15.4</td>
<td>18.23</td>
<td>5.411</td>
</tr>
</tbody>
</table>
1. 水温

イ 水温の日間変動

冬期漁場における水温の日間変動を知るために1956年11月、第58図の立花（St. 1）および中瀬（St. 3）で30分間隔に水温測定を行なった。ただし、立花の測定資料のうち11月15、27日の記録は、電気水温計の故障のため底層水温の記録を除外した。第60図は測定結果を示したもので、これによると、日間の水温は表層、底層ともに、かなり幅の大きな変動を示すことがわかる。また表層水温は、12時から2時前後で極大；15時付近で極小を示し、底層水温は表層水温と底層水温の変動が良く一致する。これは潮流による摂拌により、上下層が十分混合されていることを示す。
Fig. 59. The stations established in the Mihara Strait from December, 1957 to December, 1958.

Fig. 60. Daily fluctuations of the water temperature at the fishing grounds of Tachibana and Nakaze in November, 1956. Solid circles, surface; triangles and soft circles, bottom.

△ 水温の季節的変動
第34〜36表について、立花（第34表, St. 1）, 第35表, St. 1, 2平均値；第36表, St. 1), 中瀬（第34表, St. 2, 第35表, St. 3, 4平均値；第36表, St. 2), 満崎（第34表, St. 5；第35表, St. 5, 6平均値；第36表, St. 3）の3漁場における表層と底層との水温の季節的变化を、第61, 62, 63図に示す。
Fig. 61. Results of the oceanographic survey of water temperature at the surface and the bottom of the fishing grounds of Saizaki, Nakaze and Tachibana, 1954. Triangles, Tachibana; soft circles, Nakaze; solid circles, Saizaki.
Fig. 62. Results of the oceanographic survey, 1956-1957. Symbols, the same as shown in Fig. 61.
水温の季節的（主として冬期）変化をみると、3渔場とも水温の降下および上昇の時期は同じようなあるが、11月上旬と3月下旬とに渔場間の水温の高低さ、立花と幸崎での入れ替わる。すなわち3渔場の水温は、4月から10月までは立花が最も高く中瀬、幸崎がこれにつづくが、イカナゴの産卵期から稚仔期に当たる11月から3月までの期間では、これと逆に幸崎、中瀬、立花の順に低く、立花渔場の変化が最も大きい。2. 塩素量

塩素量はかなり小さな変動を示すが、これら冬期の塩素量はほぼ18%とみなされる。渔場間の変化の模様を模倣するために、1954、1957年の測定日ごとの定期別測定値について、高塩分のものから順に第1位から第4位までの順位を与え、第1位に4、第2位に3、第3位に2、第4位に1の各数値を与えた。また1957年2月の変化は、Fig. 63. Results of the oceanographic survey, 1957-1958. Symbols, the same as shown in Fig. 61.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Position</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>St 1</td>
<td>#2</td>
<td>#3</td>
</tr>
<tr>
<td>25 DEC. 1957</td>
<td>2.0 4.0 1.0 3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 JAN. 1958</td>
<td>1.0 3.0 3.0 3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1958 MAR. 18</td>
<td>1.0 3.0 2.0 4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 APR. 1958</td>
<td>0.5 2.0 3.0 4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 DEC. 1957</td>
<td>2.0 3.0 4.0 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 JAN. 1958</td>
<td>1.0 2.0 3.0 4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1958 MAR. 18</td>
<td>1.0 1.5 3.0 4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 APR. 1958</td>
<td>1.0 2.0 3.0 4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 DEC. 1957</td>
<td>1.5 1.5 3.5 3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 JAN. 1958</td>
<td>1.5 1.5 3.0 4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1958 MAR. 18</td>
<td>1.0 2.0 3.0 4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 APR. 1958</td>
<td>4.0 2.5 2.5 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 DEC. 1957</td>
<td>2.0 3.0 4.0 2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 JAN. 1958</td>
<td>1.0 2.0 3.0 4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1958 MAR. 18</td>
<td>2.0 1.0 3.0 4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 APR. 1958</td>
<td>4.0 1.0 3.0 2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 DEC. 1957</td>
<td>3.0 4.0 1.0 2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 JAN. 1958</td>
<td>2.5 1.0 2.5 4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1958 MAR. 18</td>
<td>3.0 1.0 2.0 4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>10.5 34.0 39.0 53.0 63.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 37. Index of the chlorinity.
Table 38. Index of the transparency.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>St 1</td>
<td>n 2</td>
<td>n 3</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>4.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>---</td>
<td>2.0</td>
</tr>
<tr>
<td>3.5</td>
<td>3.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>4.0</td>
<td>3.0</td>
</tr>
<tr>
<td>0.5</td>
<td>3.0</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>2.5</td>
<td>2.5</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>2.0</td>
<td>0.5</td>
<td>0.5</td>
<td>3.0</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>2.5</td>
<td>4.0</td>
</tr>
<tr>
<td>2.0</td>
<td>1.0</td>
<td>---</td>
<td>3.5</td>
</tr>
<tr>
<td>1.5</td>
<td>1.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>2.5</td>
<td>2.5</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>3.0</td>
</tr>
<tr>
<td>1.5</td>
<td>4.0</td>
<td>3.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Total</td>
<td>10.5</td>
<td>35.5</td>
<td>41.0</td>
</tr>
</tbody>
</table>

Table 39. Index of the settling volume of plankton.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>St 1</td>
<td>n 2</td>
<td>n 3</td>
<td>n 4</td>
</tr>
<tr>
<td>3.0</td>
<td>4.0</td>
<td>2.0</td>
<td>1.0</td>
<td>3.0</td>
</tr>
<tr>
<td>4.0</td>
<td>3.0</td>
<td>2.0</td>
<td>1.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>1.0</td>
<td>3.0</td>
<td>2.0</td>
</tr>
<tr>
<td>3.5</td>
<td>2.0</td>
<td>1.0</td>
<td>3.0</td>
<td>2.0</td>
</tr>
<tr>
<td>4.0</td>
<td>3.0</td>
<td>1.0</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1.0</td>
<td>4.0</td>
<td>3.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td>0.5</td>
<td>2.0</td>
<td>3.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>2.0</td>
<td>3.0</td>
<td>1.0</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1.0</td>
<td>3.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>0.5</td>
<td>3.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>2.0</td>
<td>3.0</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>3.0</td>
<td>4.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>4.0</td>
<td>3.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Total</td>
<td>59.5</td>
<td>55.0</td>
<td>20.5</td>
<td>18.5</td>
</tr>
</tbody>
</table>
3. 透明度・Plankton 沈濁度

塩素量について行なったと同一に、透明度および Plankton 沈濁量の指標を計測すると、第38、39表に示すようになる。透明度は潮流の激しい場所や、水深の小さい所では物理的影響を強く受けることは、井上（1963）が報告するところである。したがって、これらの各定点は、それぞれ潮流が激しく水深の比較的小さい場所が存在することを考慮する必要があるが、第38表からみると透明度は、幸崎、明海、立花の順に大きいようである。

また Plankton 沈濁度は、湖水計を使用しなかったため、えび網水深と Plankton net の口径から湖水深を推定して計算した。しかし、Plankton net の湖水深は湖床の新旧、えび網速度などに著しく影響されるので注意を要する。Plankton 沈濁量の大小を第39表から求めると、定点ごとに年変動が著しく、漁場間の差は求め難しい。

漁場調査の結果を要約すると、水温は4〜10月、11月〜翌年3月で異なり、4〜10月では立花が最も高温で幸崎が最も低温であるが、イカナボ産卵期の11月〜翌年3月では両者は逆転する。塩素量は、幸崎が最も高かんと立花が最も低かんである。また透明度は、幸崎が最も大きく立花が最も小さい。すなわち、幸崎は立花と比較すると、かなり外洋的で中間は両者の中間的特性的漁場といえる。

第5項 産卵環境調査（その2）産卵場周辺の海藻区環境調査

産卵期におけるイカナボ漁場水温の高低について調査したが、産卵場と漁場との異なることが考慮される。1954 年に行なったイカナボ漁場の底質検査からは、イカナボ卵を発見できなかった。MEEK, A. (1916) によれば、Ammodites tobianus 産卵場は、10〜40m 地の海床で卵は砂に付着していた。井上（1949）も A. personatus の卵は粘着卵で報告した。このように卵が粘着卵で、もし漁場と産卵場とが同じならば、当然底質調査から発見できる筍である。したがって MEEK, A. が A. tobianus について述べたように、A. personatus の産卵場は漁場周辺の深海部の可能性がある。そこで、漁場周辺の深海面の調査を行ない環境特性を探索することとした。

第64図は、漁場付近の20 m等深線を示し、四角印はフィッシュ・カメラによる水深測定区間を示す。

Fig. 64. Map showing the positions where the configuration of sea bottom was sounded.
これによると、20 m等深線は、(A)幸崎から三原水道を経て立花に達し、一部は幸崎から倉方島および(B)細島と因島(C)向島東南の3区分からなる。第64図に矢印で示した断面を第65、66、67図に示す。第65図は中瀬付近のもので、幸崎沖合と共通の深部(A)は岩子島西側を通り、別に独立した深部(B)が細島と因島の中間にみられる。

Fig. 65. Showing the configurations of the sea bottom from Hosó-shima to Iwashi-shima (top) and from Hosó-shima to Sagi-shima (bottom).

Fig. 66. Showing the configurations of the sea bottom from Sasa-shima to Kagami-ura of Inno-shima and from Kagami-ura to Kannon-zaki of Mukai-shima.
第66図は立花付近のもので、向島と因島間に幸崎と共通の深部(A)が延び、これとは別に観音崎付近に深部(B)がみられる。

第67図は幸崎付近のもので、幸崎漁場付近の海底は東西に走る3つの深部(A₁, A₂, A₃)から成る。これらの深部は、立花付近にみられる独立した深部ではない。幸崎から立花に延びる深部(A)に産卵するイカナゴと、同数の脊椎骨数をもつことが期待される深部は、立花の各独立した深部(B,C)から産卵されるものは、それぞれ異なる環境で孵化することが考えられる。立花付近の深部(B)は、松永瀬の影響が強く、冬期には冷水が流入するために水温の降下が著しく、また潮流の流れは常に南西に向かい、干潟の地名にもうかがわれるようにに産卵されたイカナゴ卵は、(A)深部に向って押しつぶされる公算が強い。一方中灘付近の独立した深部(B)は、(A,C)の深部に比較して冬期の水温が高目にあることが推定されるので、再び漁場付近の深部の水温について検討を加えた。調査は、1962年11月から1963年3月までの期間、第64図に示した5地点で表層および深部の水温測定を行なった。第48表は、調査結果を示したもので、これによって水温の推移を示したのが第68図である。

第40表から各定点別の表層水温と底層水温を比較すると、いずれの定点も両者の間にほとんど差がみられない。このことは、これら各定点は潮流によって上下層の混在が十分行なわれていることを示す。また、第58図から水温変化的推移を見ると、1962年12月下旬ごろはほぼ14℃で、イカナゴの産卵期は12月下旬であったことが推定され、産卵期は平年並いえよう。つぎに各定点の観測目ごとに水温の高低によって順位をつけ、その後順位にしたがってこれに水温を与えた、定点間の水温差を検討することとした。第41表は、各定点ごとの観測目における底層の水温指数を示したもので、これによって水温差は、(1)曳寄鼻 (2)三原日赤潮 (3)細島西 (4)太ノ鼻 (5)観音崎 (6)観音崎 (向島)の順に後藤那北西部から東に向って順次低下を示し、水温の高下は、海藻の深浅とは関係が少ないようである。

第6項 脊椎骨数の変異と水温

イカナゴの棲息海域は、砂浜底の浅海で潮と称される場所である。魚類の脊椎骨数は、産卵期水温の影響が強く、イカナゴは水温の影響が大きく産卵期水温が高くなるほど脊椎骨数が増加する。筆者らは潮間带内海について、地域的な変化、産卵環境などを検討した。この結果、地域的には外洋水の影響の強い海域、いえ卺ると、
Table 40. Water temperatures at the surface and bottom of

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Depth (m)</th>
<th>Bottom W.T. (°C)</th>
<th>Surface W.T. (°C)</th>
<th>Date</th>
<th>Time</th>
<th>Depth (m)</th>
<th>Bottom W.T. (°C)</th>
<th>Surface W.T. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1962 Nov.</td>
<td>8:11:23</td>
<td>43.0</td>
<td>20.4</td>
<td>20.2</td>
<td>1962 Nov.</td>
<td>8:12:25</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1962 Nov.</td>
<td>19:24</td>
<td>48.0</td>
<td>19.0</td>
<td>18.8</td>
<td>1962 Nov.</td>
<td>19:11:00</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1962 Nov.</td>
<td>30:50</td>
<td>67.0</td>
<td>17.5</td>
<td>17.3</td>
<td>1962 Nov.</td>
<td>30:11:20</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Dec.</td>
<td>7:12:00</td>
<td>45.0</td>
<td>16.6</td>
<td>16.5</td>
<td>Dec.</td>
<td>14:30</td>
<td>33.0</td>
<td>14.5</td>
<td>14.8</td>
</tr>
<tr>
<td>Dec.</td>
<td>14:30</td>
<td>56.0</td>
<td>15.4</td>
<td>15.5</td>
<td>Dec.</td>
<td>9:15</td>
<td>44.0</td>
<td>14.3</td>
<td>13.8</td>
</tr>
<tr>
<td>Dec.</td>
<td>21:12:05</td>
<td>72.0</td>
<td>15.1</td>
<td>15.1</td>
<td>Dec.</td>
<td>27:21</td>
<td>9:14</td>
<td>8:20</td>
<td></td>
</tr>
<tr>
<td>Dec.</td>
<td>27:30</td>
<td>53.0</td>
<td>14.6</td>
<td>14.1</td>
<td>Dec.</td>
<td>7:14:50</td>
<td>3.0</td>
<td>19:30</td>
<td></td>
</tr>
<tr>
<td>'63 Jan.</td>
<td>8:11:57</td>
<td>46.0</td>
<td>12.6</td>
<td>12.6</td>
<td>'63 Jan.</td>
<td>8:12:40</td>
<td>33.0</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>'63 Jan.</td>
<td>14:10:10</td>
<td>48.0</td>
<td>11.7</td>
<td>11.6</td>
<td>'63 Jan.</td>
<td>14:8:40</td>
<td>30.0</td>
<td>11.2</td>
<td>11.0</td>
</tr>
<tr>
<td>'63 Jan.</td>
<td>24:13:15</td>
<td>55.0</td>
<td>10.4</td>
<td>—</td>
<td>'63 Jan.</td>
<td>14:14:45</td>
<td>35.0</td>
<td>10.0</td>
<td>9.6</td>
</tr>
<tr>
<td>'63 Jan.</td>
<td>24:13:15</td>
<td>55.0</td>
<td>10.4</td>
<td>—</td>
<td>'63 Jan.</td>
<td>24:14:50</td>
<td>35.0</td>
<td>10.0</td>
<td>9.6</td>
</tr>
<tr>
<td>Feb.</td>
<td>2:9:20</td>
<td>36.0</td>
<td>9.2</td>
<td>9.0</td>
<td>Feb.</td>
<td>2:8:40</td>
<td>42.0</td>
<td>9.5</td>
<td>9.0</td>
</tr>
<tr>
<td>Feb.</td>
<td>7:11:25</td>
<td>63.0</td>
<td>9.1</td>
<td>9.0</td>
<td>Feb.</td>
<td>7:12:00</td>
<td>47.0</td>
<td>9.0</td>
<td>8.8</td>
</tr>
<tr>
<td>Feb.</td>
<td>14:9:15</td>
<td>30.0</td>
<td>8.6</td>
<td>8.6</td>
<td>Feb.</td>
<td>14:8:40</td>
<td>28.0</td>
<td>8.4</td>
<td>8.2</td>
</tr>
<tr>
<td>Feb.</td>
<td>22:9:30</td>
<td>38.0</td>
<td>8.6</td>
<td>8.6</td>
<td>Feb.</td>
<td>22:8:35</td>
<td>40.0</td>
<td>8.5</td>
<td>8.6</td>
</tr>
<tr>
<td>Feb.</td>
<td>28:11:40</td>
<td>45.0</td>
<td>8.8</td>
<td>8.8</td>
<td>Feb.</td>
<td>28:13:50</td>
<td>45.0</td>
<td>8.8</td>
<td>8.8</td>
</tr>
<tr>
<td>Mar.</td>
<td>14:21:35</td>
<td>56.0</td>
<td>9.0</td>
<td>9.0</td>
<td>Mar.</td>
<td>14:9:00</td>
<td>29.0</td>
<td>8.8</td>
<td>8.8</td>
</tr>
</tbody>
</table>

Fig. 68. Variations of the water temperature at the surface and bottom of the

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (m)</td>
<td>Bottom W. T. (°C)</td>
<td>Surface W. T. (°C)</td>
</tr>
<tr>
<td>25.5</td>
<td>51.0</td>
<td>8.8</td>
</tr>
<tr>
<td>20.0</td>
<td>8.9</td>
<td>18.9</td>
</tr>
<tr>
<td>30.0</td>
<td>16.9</td>
<td>16.9</td>
</tr>
<tr>
<td>39.0</td>
<td>16.1</td>
<td>16.2</td>
</tr>
<tr>
<td>41.0</td>
<td>15.0</td>
<td>15.1</td>
</tr>
<tr>
<td>42.0</td>
<td>14.7</td>
<td>14.8</td>
</tr>
<tr>
<td>43.0</td>
<td>14.2</td>
<td>13.8</td>
</tr>
<tr>
<td>35.0</td>
<td>12.5</td>
<td>12.4</td>
</tr>
<tr>
<td>39.0</td>
<td>11.2</td>
<td>11.2</td>
</tr>
<tr>
<td>40.0</td>
<td>9.4</td>
<td>9.2</td>
</tr>
<tr>
<td>40.0</td>
<td>8.9</td>
<td>8.8</td>
</tr>
<tr>
<td>34.0</td>
<td>8.5</td>
<td>8.7</td>
</tr>
<tr>
<td>31.0</td>
<td>8.5</td>
<td>8.3</td>
</tr>
<tr>
<td>33.0</td>
<td>8.2</td>
<td>8.4</td>
</tr>
<tr>
<td>40.0</td>
<td>8.4</td>
<td>8.9</td>
</tr>
<tr>
<td>36.0</td>
<td>8.8</td>
<td>8.9</td>
</tr>
</tbody>
</table>

Table 41. Ranking index of the water temperature at 5 stations.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>1962 Nov. 8</td>
<td>19</td>
<td>30</td>
<td>Dec. 7</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>---</td>
<td>3.0</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>4.0</td>
<td>3.0</td>
<td>1.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Fumio Osawa (1952) points out that the rank of the water temperature at 5 stations is shown in the table. The mode is 1.5. The temperature is divided into 5 categories: 0-1, 1-2, 2-3, 3-4, and 4-5. The highest rank is 5, and the lowest rank is 1. The temperature range is from 0°C to 5°C.

第4節 頭長と体長

体長に対する体の各部分の割合が、魚の生育環境によって変化することを考慮に入れる。比較的資料の豊かな植物を、主要な造場のイカナゴについて、頭長と体長との割合を示すと第60図のようになる。

これによって頭長と体長との比は、採択日が遅れるにつれ（体長の増加）0才魚＞1才魚＞2才魚の順に低下する。1954年度資料から3造場の差を示すと、第70図のように造場間では差が認められない。

第71図は、採択日ごとに平均体長と平均頭長との関係を漁場別に示したもので、これによると体長の増加に伴い頭長比は減少する。また頭長比の変動の幅は漁場によって異なり、立花、早市は変動の幅が広い。このことは中瀬産イカナゴが、かなり均一性の強い魚群であることによるものと考えられ体長が5-6cm以
Fig. 69. Monthly changes by fishing grounds of the coefficient of \(\frac{\text{head length}}{\text{body length}} \times 10 \) and the fishing date of specimens handled. Solid circles, 0-year fish; crosses, 1-year fish; soft circles, 2-year fish.

Fig. 70. Monthly variations of the coefficient of \(\frac{\text{head length}}{\text{body length}} \times 10 \) obtained in 1954. Solid circles, Saizaki; soft circles, Tachibana; crosses, Nakaze.

上に成長すると、それぞれの漁場特性に応じた変異を示すものと思われる。石垣・加賀 (1957) によれば、北海道では10cm以下では明らかでないが、それ以上では体長の増加に伴い、北部ほど頭長が大きくなる傾向があると述べた。ここでは地域差はあまり認められないが、立花漁場で幾分小さいようである。
Fig. 71. Monthly variations of the coefficient of	head length \times 10 for the specimens
body length caught at the three fishing grounds.

第5節 性比

性比は、資源学的に重要な意義をもつことは良く知られている。井上（1952）は、尾道市美和町で水揚げされるイカナゴの性比について調査し0.833（5/6）であったと報告した。第42表は、兵庫、岡山、愛媛各県水産試験場委託調査結果で、第43表は、筆者らがその後調査を追加した結果を示す。生殖腺による雌雄の判別は産卵期以外は困難のため、主として産卵期の魚体を調査した。

これらの表から性比を求めると、第42表では0.977、第43表では0.975となり両者は良く一致し、井上（1952）の0.833より大きい。第43表について産卵期の12月を基として、11月～12月のものと1月～2月のものを比較すると、11月～12月のものは雌2,457尾、雄2,527尾で性比は1.028、1月～2月のものは雌641尾、雄495尾で性比0.772を示し、性比は産卵期の前後で異なる。このことは、産卵開始までのイカナゴは雌雄ほぼ同数に近いが、産卵が終わると雌の残存個体数が雄の残存個体数を上回るために生じた現象と考えられる。浜田（1967）は、親魚の性比は1年魚では雌が多く、2、3年魚では雄が多い傾向がみられたが、検定の結果ではほぼ1：1と推定した。本調査結果でもイカナゴの性比は1とみて差しきつかえないであろう。

第6節 鰭枚数

顎枚は、年令査定の上からも生息環境査定上からも重要な意義があり、また顎長は、体長推定に使用されるおことは衆知の通りである。
Table 42. Sex-ratios of sand-lance based on the data obtained by the Prefectural Experimental Fisheries Stations of Hyogo, Okayama and Ehime.

<table>
<thead>
<tr>
<th>Date</th>
<th>Landing place</th>
<th>Fishing gear</th>
<th>N@</th>
<th>@</th>
<th>Unknown</th>
<th>δ / Ψ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1955 Dec. 23</td>
<td>Akashi</td>
<td>Bunchin</td>
<td>30</td>
<td>19</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>1956 Jan. 11</td>
<td></td>
<td>Boat-seine</td>
<td>30</td>
<td>12</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>Feb. 7</td>
<td></td>
<td>Bunchin</td>
<td>20</td>
<td>9</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Mar. 4</td>
<td></td>
<td>Boat-seine</td>
<td>30</td>
<td>14</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>Nov. 16</td>
<td></td>
<td>Efoko</td>
<td>30</td>
<td>13</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>Feb. 23</td>
<td></td>
<td>Pacchi-ami</td>
<td>30</td>
<td>15</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Mar. 2</td>
<td></td>
<td>Boat-seine</td>
<td>30</td>
<td>16</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>Dec. 2</td>
<td></td>
<td>Boat-seine</td>
<td>30</td>
<td>15</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Jan. 28</td>
<td></td>
<td>Efoko</td>
<td>30</td>
<td>14</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>Feb. 25</td>
<td></td>
<td>Boat-seine</td>
<td>30</td>
<td>13</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>Mar. 9</td>
<td></td>
<td>Boat-seine</td>
<td>30</td>
<td>21</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Mar. 18</td>
<td></td>
<td>Shimotsui</td>
<td>50</td>
<td>23</td>
<td>27</td>
<td>0</td>
</tr>
<tr>
<td>Apr. 27</td>
<td></td>
<td>Pacchi-ami</td>
<td>50</td>
<td>21</td>
<td>29</td>
<td>0</td>
</tr>
<tr>
<td>Apr. 27</td>
<td></td>
<td>Boat-seine</td>
<td>39</td>
<td>23</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>Apr. 18</td>
<td></td>
<td>Hoop-net</td>
<td>50</td>
<td>24</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>Apr. 17</td>
<td></td>
<td>Pacchi-ami</td>
<td>50</td>
<td>25</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>Apr. 17</td>
<td></td>
<td>Boat-seine</td>
<td>50</td>
<td>24</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>Nov. 18</td>
<td></td>
<td>Imabaru</td>
<td>50</td>
<td>25</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>Apr. 27</td>
<td></td>
<td>Imabaru</td>
<td>30</td>
<td>5</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>Apr. 27</td>
<td></td>
<td>Ikuha</td>
<td>30</td>
<td>13</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>Apr. 27</td>
<td></td>
<td>Ikuha</td>
<td>30</td>
<td>14</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>Apr. 27</td>
<td></td>
<td>Ikuha</td>
<td>30</td>
<td>13</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>Nov. 18</td>
<td></td>
<td>Ikuha</td>
<td>30</td>
<td>13</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>Dec. 2</td>
<td></td>
<td>Ikuha</td>
<td>30</td>
<td>18</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Dec. 2</td>
<td></td>
<td>Pacchi-ami</td>
<td>30</td>
<td>14</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>Dec. 2</td>
<td></td>
<td>Boat-seine</td>
<td>30</td>
<td>11</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>Dec. 2</td>
<td></td>
<td>Boat-seine</td>
<td>30</td>
<td>14</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>Dec. 2</td>
<td></td>
<td>Boat-seine</td>
<td>30</td>
<td>15</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Dec. 2</td>
<td></td>
<td>Ikuha</td>
<td>30</td>
<td>15</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Dec. 2</td>
<td></td>
<td>Ikuha</td>
<td>15</td>
<td>7</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Feb. 21</td>
<td></td>
<td>Pacchi-ami</td>
<td>30</td>
<td>12</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>Mar. 14</td>
<td></td>
<td>Pacchi-ami</td>
<td>30</td>
<td>13</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Mar. 19</td>
<td></td>
<td>Pacchi-ami</td>
<td>30</td>
<td>13</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>Apr. 20</td>
<td></td>
<td>Pacchi-ami</td>
<td>30</td>
<td>14</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>Jan. 20</td>
<td></td>
<td>Hoop-net</td>
<td>30</td>
<td>13</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>Feb. 25</td>
<td></td>
<td>Pacchi-ami</td>
<td>30</td>
<td>12</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>Feb. 25</td>
<td></td>
<td>Pacchi-ami</td>
<td>30</td>
<td>16</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>Mar. 24</td>
<td></td>
<td>Pacchi-ami</td>
<td>30</td>
<td>15</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Mar. 9</td>
<td></td>
<td>Mukuchi-shima</td>
<td>30</td>
<td>15</td>
<td>15</td>
<td>0</td>
</tr>
</tbody>
</table>
| Date | Landing place | Fishing gear | No. | | | δ | Unknown | δ / |%
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb. 4</td>
<td>Ushi-shima</td>
<td>Hoop-net</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>Kama-shima</td>
<td>"</td>
<td>30</td>
<td>16</td>
<td>14</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Mar. 4</td>
<td>Hon-shima</td>
<td>"</td>
<td>30</td>
<td>16</td>
<td>14</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>Ikuha</td>
<td>S-seine</td>
<td>30</td>
<td>18</td>
<td>12</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>"</td>
<td>"</td>
<td>30</td>
<td>16</td>
<td>14</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>L</td>
<td>"</td>
<td>30</td>
<td>12</td>
<td>18</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>L</td>
<td>"</td>
<td>30</td>
<td>13</td>
<td>17</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>L</td>
<td>"</td>
<td>30</td>
<td>9</td>
<td>21</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>L</td>
<td>"</td>
<td>30</td>
<td>13</td>
<td>17</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>L</td>
<td>"</td>
<td>30</td>
<td>19</td>
<td>11</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>L</td>
<td>"</td>
<td>30</td>
<td>17</td>
<td>12</td>
<td>1</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Feb. 23</td>
<td>"</td>
<td>Pacchi-ami</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Mar. 9</td>
<td>"</td>
<td>"</td>
<td>30</td>
<td>23</td>
<td>7</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>"</td>
<td>"</td>
<td>30</td>
<td>18</td>
<td>12</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>May 14</td>
<td>"</td>
<td>"</td>
<td>30</td>
<td>13</td>
<td>13</td>
<td>4</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>"</td>
<td>"</td>
<td>30</td>
<td>11</td>
<td>19</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>"</td>
<td>30</td>
<td>15</td>
<td>15</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>"</td>
<td>30</td>
<td>13</td>
<td>17</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>"</td>
<td>30</td>
<td>17</td>
<td>13</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>June 9</td>
<td>"</td>
<td>"</td>
<td>30</td>
<td>15</td>
<td>15</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>"</td>
<td>Boat-seine</td>
<td>30</td>
<td>16</td>
<td>14</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>July 24</td>
<td>"</td>
<td>Drift net</td>
<td>30</td>
<td>14</td>
<td>16</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Aug. 25</td>
<td>"</td>
<td>Trawl net</td>
<td>25</td>
<td>14</td>
<td>11</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>"</td>
<td>14</td>
<td>7</td>
<td>7</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>"</td>
<td>Boat-seine</td>
<td>30</td>
<td>16</td>
<td>14</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>"</td>
<td>Pacchi-ami</td>
<td>30</td>
<td>14</td>
<td>16</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Dec. 3</td>
<td>"</td>
<td>Boat-seine</td>
<td>30</td>
<td>18</td>
<td>12</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>"</td>
<td>"</td>
<td>30</td>
<td>18</td>
<td>12</td>
<td>0</td>
<td>0.908</td>
<td>0.908</td>
</tr>
<tr>
<td>20</td>
<td>"</td>
<td>"</td>
<td>30</td>
<td>12</td>
<td>18</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Feb. 16</td>
<td>"</td>
<td>Pacchi-ami</td>
<td>30</td>
<td>15</td>
<td>15</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>"</td>
<td>"</td>
<td>60</td>
<td>36</td>
<td>24</td>
<td>0</td>
<td>0.905</td>
<td>0.905</td>
</tr>
<tr>
<td>Mar. 8</td>
<td>"</td>
<td>Boat-seine</td>
<td>30</td>
<td>19</td>
<td>11</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>"</td>
<td>Pacchi-ami</td>
<td>30</td>
<td>14</td>
<td>13</td>
<td>3</td>
<td>0.657</td>
<td>0.657</td>
</tr>
<tr>
<td>May 18</td>
<td>"</td>
<td>"</td>
<td>30</td>
<td>17</td>
<td>13</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>"</td>
<td>"</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>"</td>
<td>"</td>
<td>30</td>
<td>17</td>
<td>13</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>"</td>
<td>"</td>
<td>30</td>
<td>5</td>
<td>5</td>
<td>20</td>
<td>0.778</td>
<td>0.778</td>
</tr>
<tr>
<td>Mar. 25</td>
<td>"</td>
<td>"</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>June 1</td>
<td>"</td>
<td>"</td>
<td>30</td>
<td>17</td>
<td>13</td>
<td>0</td>
<td>0.622</td>
<td>0.622</td>
</tr>
<tr>
<td>Mar. 1</td>
<td>"</td>
<td>"</td>
<td>30</td>
<td>15</td>
<td>15</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>"</td>
<td>"</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td>0.714</td>
<td>0.714</td>
</tr>
</tbody>
</table>

2,994 1,492 1,458 44 0.977

Remarks: L...Large specimens.
S...Small specimens.
Table 43. Sex-ratios of sand-lance.

<table>
<thead>
<tr>
<th>Date</th>
<th>Landing place</th>
<th>Fishing gear</th>
<th>No.</th>
<th>♂</th>
<th>‡</th>
<th>Unknown</th>
<th>♂ / ‡</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>1947 Dec. 14</td>
<td>Sumoto</td>
<td></td>
<td>32</td>
<td>16</td>
<td>9</td>
<td>7</td>
<td>0.563</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>Yoshiwa</td>
<td>Hoop-net</td>
<td>71</td>
<td>30</td>
<td>21</td>
<td>20</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>910</td>
<td>318</td>
<td>469</td>
<td>123</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td>44</td>
<td>17</td>
<td>17</td>
<td>10</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td>90</td>
<td>30</td>
<td>27</td>
<td>33</td>
<td>1.079</td>
<td>—</td>
</tr>
<tr>
<td>'49 Jan. 10</td>
<td></td>
<td></td>
<td>167</td>
<td>86</td>
<td>33</td>
<td>48</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Nov. 24</td>
<td></td>
<td></td>
<td>257</td>
<td>79</td>
<td>98</td>
<td>80</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Dec. 6</td>
<td></td>
<td></td>
<td>238</td>
<td>99</td>
<td>119</td>
<td>20</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td>209</td>
<td>60</td>
<td>80</td>
<td>69</td>
<td>1.019</td>
<td>—</td>
</tr>
<tr>
<td>'50 Dec. 12</td>
<td>Saizaki</td>
<td>Boat-seine</td>
<td>160</td>
<td>68</td>
<td>69</td>
<td>23</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>167</td>
<td>65</td>
<td>88</td>
<td>14</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td>238</td>
<td>26</td>
<td>19</td>
<td>193</td>
<td>1.107</td>
<td>—</td>
</tr>
<tr>
<td>'51 Dec. 28</td>
<td>Yoshiwa</td>
<td>Hoop-net</td>
<td>39</td>
<td>2</td>
<td>6</td>
<td>31</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Jan. 10</td>
<td>Saizaki</td>
<td>Boat-seine</td>
<td>193</td>
<td>21</td>
<td>8</td>
<td>164</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Dec. 2</td>
<td></td>
<td></td>
<td>47</td>
<td>15</td>
<td>17</td>
<td>15</td>
<td>—</td>
<td>(0)</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>78</td>
<td>28</td>
<td>44</td>
<td>6</td>
<td>—</td>
<td>(0)</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td>50</td>
<td>8</td>
<td>6</td>
<td>36</td>
<td>—</td>
<td>(0)</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td>12</td>
<td>—</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>1</td>
<td>1.039</td>
<td>(2)</td>
</tr>
<tr>
<td>'52 Jan. 2</td>
<td></td>
<td></td>
<td>27</td>
<td>4</td>
<td>4</td>
<td>19</td>
<td>—</td>
<td>(0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>0.833</td>
<td>(1)</td>
</tr>
<tr>
<td>'54 Dec. 4</td>
<td></td>
<td></td>
<td>421</td>
<td>238</td>
<td>158</td>
<td>25</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>585</td>
<td>296</td>
<td>279</td>
<td>10</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td>556</td>
<td>247</td>
<td>277</td>
<td>32</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td>526</td>
<td>239</td>
<td>256</td>
<td>31</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td>671</td>
<td>328</td>
<td>328</td>
<td>15</td>
<td>0.963</td>
<td>—</td>
</tr>
<tr>
<td>'55 Jan. 4</td>
<td></td>
<td></td>
<td>381</td>
<td>146</td>
<td>223</td>
<td>12</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Feb. 1</td>
<td></td>
<td></td>
<td>814</td>
<td>139</td>
<td>67</td>
<td>608</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Dec. 10</td>
<td></td>
<td></td>
<td>382</td>
<td>244</td>
<td>136</td>
<td>2</td>
<td>8.05</td>
<td>—</td>
</tr>
<tr>
<td>Jan. 16</td>
<td>Hiroshima</td>
<td></td>
<td>174</td>
<td>13</td>
<td>2</td>
<td>159</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'56 Jan. 12</td>
<td>Tachihana</td>
<td>Hoop-net</td>
<td>455</td>
<td>108</td>
<td>108</td>
<td>239</td>
<td>—</td>
<td>(0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>29</td>
<td>10</td>
<td>11</td>
<td>8</td>
<td>—</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td>—</td>
<td>—</td>
<td>21</td>
<td>1.008</td>
<td>(2)</td>
</tr>
<tr>
<td>'57 Jan. 7</td>
<td>Saizaki</td>
<td>Boat-seine</td>
<td>1,036</td>
<td>89</td>
<td>31</td>
<td>916</td>
<td>—</td>
<td>(0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>129</td>
<td>8</td>
<td>3</td>
<td>118</td>
<td>—</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>—</td>
<td>1</td>
<td>4</td>
<td>0.361</td>
<td>(2)</td>
</tr>
<tr>
<td>'58 Jan. 7</td>
<td></td>
<td></td>
<td>111</td>
<td>15</td>
<td>3</td>
<td>93</td>
<td>0.200</td>
<td>—</td>
</tr>
</tbody>
</table>

第1項 採捕場所と鰭紋
魚体の位置による鰭紋数および鰭紋間隔を調査した。
調査方法
第72図に示す魚体の体側4箇所（A, B, C, D）から採録し、それぞれの採録場所で正常角4〜6枚を選び、これを50倍の投影機で鱗紋数と鱗紋間隔を測定した。測定結果は1尾ごとで、平均値を求めた。測定尾数は、立花産のものについて、1954年4月27日20尾、1955年3月5日20尾；中瀬産のものについて、1954年4月28日20尾、同日漁魚21尾、8月4日20尾；幸崎産のものについて、1954年4月30日2尾、12月29日20尾で、詳細は議論を避けるため省略。

Fig. 72. Showing the scale collecting portions.

調査結果
第73図は、鱗長、鱗紋数（完全円鱗紋、半円鱗紋を含む2種を合わせて魚別に平均値で示したものです。）

Scale length

Number of rings

Fig. 73. The scale length, number of rings and number of semicircular rings at each position shown in Fig. 72. ●□…Tachibana (April 27, 1954; March 5, 1955) ○△…Nakaze (April 28, August 4, 1954); +…Saizaki (December 29, 1954).

これらの結果を要約すると
1. 鱗長は、D＞C＞A＞Bの順で腹部が最も小さい。
2. 鱗紋数は、D＞C＞B＞Aの順で胸部の基部が最も少ない。
3. 円輪鱗紋数は、2と順位は同じである。

第74図は、各採集日ごとの資料について
(A)第1輪紋から縁辺鱗紋までの各円輪の間隔と、(B)半円輪紋を含めた各輪紋間の間隔を示す。
まず円輪鱗紋についてみると、
1. 円輪鱗紋間隔は各部位ともに第2輪が狭い。
2. 4月の種類魚では輪紋間隔は、A, B, Cともほとんど一致するが、Dはこれらより大きい。
3. 8月以後の魚体は、第1〜3輪までは種類魚とは逆に、間隔はDがA, B, Cよりも小さく、第4輪以上では、DがA, B, Cよりも大きい。
つきに半円鱗紋を含めた輪紋についてみると、半円鱗紋を含めた輪紋間隔は縁辺にいくにしたがって幅が狭くなるが、第1〜4輪まではDがA, B, Cよりも幾分広い。

--- 94 ---
Fig. 74. Relations between the number of scale rings and the average space between rings. (1), circula rings only; (2), semicircular rings inclusive; ●. Position A: ○, Position B: ×, Position C: ⬜, Position D.
以上の結果からすれば、イカナゴの年令推定のための採取部位はDが適当と思われる。また1年目の年輪の生ずる位置は、A、B、Cのものでは第4円輪目、Dのものでは第5円輪目である。なお2ヶ月間の養殖による鱗紋の変化は全く認められなかった。

第2項 年輪出現時期

イカナゴの年令を鱗によって推定する方法は、年輪の出現時期を知ることは重要な問題である。イカナゴの年令推定は、外見的に色彩と、魚体の大きさによってほぼ推定できるといわれる。

調査方法

年輪出現時期の調査方法は、鱗に出現する輪紋の状態によって次のように区分した。年輪紋の見えない魚をX、年輪紋が1つのものを1、年輪紋が1個とその外縁部に伸びのあるものを1 + X、年輪紋が2つのものを2、年輪紋が2個とその外縁部に伸びのあるものを2 + Xとした。

調査結果

調査結果を第44表に示す。この表では、1、2は全くみられないと、1 + Xははじめて鱗に年輪が生じたことを示すので、1 + Xの出現率を採捕日別に示すと、第75図のようになる。

第75図によって、イカナゴの鱗における年輪出現状況は、Table 44。composition of annual rings by landing places and the date。Landing place | Date | Number of rings
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Saizaki</td>
<td>1950 Dec. 25</td>
<td>36(94.74) 2(5.26)</td>
</tr>
<tr>
<td>Yoshiwa</td>
<td>'51 Feb. 26</td>
<td>28(86.11) 5(13.89)</td>
</tr>
<tr>
<td>Saizaki</td>
<td>'52 Dec. 4</td>
<td>42(66.51) 164(33.49)</td>
</tr>
<tr>
<td></td>
<td>Mar. 15</td>
<td>1(7.14) 13(92.86)</td>
</tr>
<tr>
<td></td>
<td>Feb. 19</td>
<td>2(8.33) 22(91.67)</td>
</tr>
<tr>
<td></td>
<td>Apr. 5</td>
<td>2(12.50) 4(87.50)</td>
</tr>
<tr>
<td></td>
<td>Feb. 15</td>
<td>2(3.33) 22(96.67)</td>
</tr>
<tr>
<td>Takami</td>
<td>Feb. 22</td>
<td>9(23.68) 29(76.32)</td>
</tr>
<tr>
<td>Tachibana</td>
<td>Apr. 1</td>
<td>4(5.41) 35(94.59)</td>
</tr>
<tr>
<td>Nakaze</td>
<td>Aug. 10</td>
<td>55(90.16) 6(9.84)</td>
</tr>
<tr>
<td></td>
<td>Nov. 25</td>
<td>40(88.89) 5(11.11)</td>
</tr>
<tr>
<td>Saizaki</td>
<td>'55 Feb. 1</td>
<td>167(25.11) 498(74.89)</td>
</tr>
<tr>
<td></td>
<td>Dec. 10</td>
<td>256(67.19) 125(32.81)</td>
</tr>
<tr>
<td></td>
<td>Mar. 19</td>
<td>246(70.69) 102(29.31)</td>
</tr>
<tr>
<td></td>
<td>Feb. 5</td>
<td>60(42.25) 82(57.75)</td>
</tr>
<tr>
<td>Simokasai</td>
<td>Feb. 28</td>
<td>174(86.57) 27(13.43)</td>
</tr>
<tr>
<td>Myoken</td>
<td>Feb. 28</td>
<td>34(36.56) 59(63.44)</td>
</tr>
<tr>
<td>Hiroshima</td>
<td>Mar. 5</td>
<td>36(22.93) 121(77.07)</td>
</tr>
<tr>
<td></td>
<td>Jan. 16</td>
<td>167(97.09) 5(2.91)</td>
</tr>
<tr>
<td></td>
<td>Feb. 15</td>
<td>163(73.56) 58(26.44)</td>
</tr>
<tr>
<td>Tachibana</td>
<td>'54 Dec. 22</td>
<td>190(40.08) 284(59.92)</td>
</tr>
<tr>
<td></td>
<td>Mar. 21</td>
<td>349(58.66) 246(41.34)</td>
</tr>
<tr>
<td></td>
<td>May 31</td>
<td>212(37.52) 353(62.48)</td>
</tr>
<tr>
<td></td>
<td>Jun. 20</td>
<td>103(56.28) 80(43.72)</td>
</tr>
<tr>
<td></td>
<td>Jun. 16</td>
<td>22(19.64) 90(80.36)</td>
</tr>
<tr>
<td></td>
<td>Jul. 20</td>
<td>58(32.95) 118(67.05)</td>
</tr>
<tr>
<td>Tachibana</td>
<td>'56 Jul. 21</td>
<td>479(77.13) 142(22.87)</td>
</tr>
<tr>
<td></td>
<td>Mar. 11</td>
<td>256(69.57) 112(30.43)</td>
</tr>
<tr>
<td></td>
<td>Apr. 9</td>
<td>86(36.63) 3(63.37)</td>
</tr>
<tr>
<td></td>
<td>May 9</td>
<td>92(85.98) 15(14.02)</td>
</tr>
<tr>
<td></td>
<td>Jun. 1</td>
<td>2(28.57) 7(71.43)</td>
</tr>
<tr>
<td>Saizaki</td>
<td>Apr. 22</td>
<td>28(73.68) 10(26.32)</td>
</tr>
<tr>
<td></td>
<td>May 16</td>
<td>278(72.58) 105(27.42)</td>
</tr>
<tr>
<td></td>
<td>Jun. 1</td>
<td>244(73.05) 96(26.95)</td>
</tr>
<tr>
<td>Hosonosu</td>
<td>June 1</td>
<td>14(60.87) 9(39.13)</td>
</tr>
<tr>
<td></td>
<td>Feb. 21</td>
<td>416(66.88) 208(33.12)</td>
</tr>
<tr>
<td></td>
<td>May 16</td>
<td>79(57.53) 2(42.47)</td>
</tr>
<tr>
<td></td>
<td>Jun. 31</td>
<td>43(79.63) 11(20.37)</td>
</tr>
<tr>
<td>Nakaze</td>
<td>'58 May 1</td>
<td>106(56.23) 43(43.77)</td>
</tr>
<tr>
<td></td>
<td>Jan. 6</td>
<td>506(51.69) 472(48.31)</td>
</tr>
<tr>
<td></td>
<td>Mar. 6</td>
<td>630(70.55) 263(29.45)</td>
</tr>
<tr>
<td></td>
<td>Apr. 16</td>
<td>66(43.42) 86(56.58)</td>
</tr>
</tbody>
</table>
Fig. 75. Seasonal change of percentage of individuals bearing the first annual rings.

Fig. 76. Relations between the body length and the number of semicircular rings and the radius of scale. ○▼・・・Tachibana; × ○・・・Nakaze; △・・・Saizaki.
久保、吉原（1957）は、Schuck, H. A. (1949) を引用して体長と胸長との回帰式を示し、体長 S (mm × 50)、胸長 L (cm) とすれば、次式のようにになる。

$$ S = 1.478L - 1.523 $$

しかし久保らは、両者の関係が $S = aL - b$ で示される場合には、鰭前魚の不染しているためであると述べている。

第7節 年 齢 組 成

イクナゴの年令構成については、耳石による方法と雛による方法が大島（1950）、楠原ら（1957）によって示された。耳石による年令構成は、供試材料がフォルマリフタ基のため困難で、本調査では雛による方法を採用した。イクナゴは稚魚期と成魚期とは生活様式を異にする。すなわち孵化後から4ヶ月ごろまでの稚魚期と成魚期は遊泳生活を送るが、5ヶ月を過ぎた後から砂中に潜入するようになる。したがって、3月から4月までのイクナゴ雛魚は、単に遊泳生活する稚魚と捕獲し、5月以降では底生的な生活に移行した稚魚を観察し、数まで漁獲することになる。また行動場所の変化に応じて、鰭の特性も強く魚の年令組成に影響するものと考えられる（竹田1966）。イクナゴの年令組成は、これらの理由によって、簡単には求めるべきではないが、養殖魚の調査結果が年令層0、1才魚が見られる場の選択について述べると、Table 45 の通りである。なお鰭による年令検査は、先に述べたごとく実施したものではないが、当才魚は1才魚以上のものとの外見的にかなり明かな色調、体長の相違もみられるので、鰭の年令検査を精度よくすることができる。

<table>
<thead>
<tr>
<th>Date</th>
<th>Landing place</th>
<th>Na.</th>
<th>Age</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1949</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr. 14</td>
<td>Yoshiwa</td>
<td>291</td>
<td>290(99.66)</td>
<td>1 (0.34)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar. 29</td>
<td></td>
<td>329</td>
<td>326(99.09)</td>
<td>3 (0.91)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr. 5</td>
<td></td>
<td>236</td>
<td>233(98.73)</td>
<td>5 (1.27)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr. 13</td>
<td></td>
<td>297</td>
<td>281(94.61)</td>
<td>16 (5.39)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr. 20</td>
<td></td>
<td>260</td>
<td>247(95.00)</td>
<td>13 (5.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr. 27</td>
<td></td>
<td>300</td>
<td>294(98.00)</td>
<td>6 (2.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>May. 4</td>
<td></td>
<td>273</td>
<td>266(97.44)</td>
<td>7 (2.56)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>May. 13</td>
<td></td>
<td>294</td>
<td>285(95.94)</td>
<td>9 (3.06)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec. 20</td>
<td>Saizaki</td>
<td>175</td>
<td>173(98.86)</td>
<td>2 (1.14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec. 29</td>
<td></td>
<td>110</td>
<td>106(96.36)</td>
<td>4 (3.64)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan. 10</td>
<td></td>
<td>38</td>
<td>38(94.74)</td>
<td>2 (5.26)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec. 2</td>
<td></td>
<td>176</td>
<td>138(85.33)</td>
<td>23 (13.67)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec. 17</td>
<td></td>
<td>48</td>
<td>47(97.92)</td>
<td>1 (2.08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec. 25</td>
<td></td>
<td>82</td>
<td>78(95.12)</td>
<td>4 (4.88)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr. 3</td>
<td>Yoshiwa</td>
<td>1025</td>
<td>985(95.34)</td>
<td>140 (13.66)</td>
<td>1 (1.49)</td>
<td></td>
</tr>
<tr>
<td>Dec. 28</td>
<td>Tachihana</td>
<td>39</td>
<td>31(86.41)</td>
<td>5 (12.82)</td>
<td>3 (0.737)</td>
<td></td>
</tr>
<tr>
<td>June 14</td>
<td>Saizaki</td>
<td>321</td>
<td>311(96.89)</td>
<td>10 (3.12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan. 2</td>
<td></td>
<td>35</td>
<td>27(77.14)</td>
<td>8 (22.86)</td>
<td>6 (18.18)</td>
<td></td>
</tr>
<tr>
<td>Feb. 6</td>
<td>Yoshiwa</td>
<td>33</td>
<td>23(69.70)</td>
<td>4 (12.12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr. 17</td>
<td></td>
<td>332</td>
<td>278(83.74)</td>
<td>54 (16.27)</td>
<td>1 (0.85)</td>
<td></td>
</tr>
<tr>
<td>Mar. 26</td>
<td></td>
<td>118</td>
<td>58(49.15)</td>
<td>59 (50.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Landing place</td>
<td>No.</td>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---------------</td>
<td>------</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>'53</td>
<td>Apr. 2</td>
<td>461</td>
<td>458(99.35)</td>
<td>3(0.65)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>May 8</td>
<td>221</td>
<td>310(96.57)</td>
<td>11(3.43)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apr. 25</td>
<td>443</td>
<td>442(99.77)</td>
<td>1(0.23)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feb. 19</td>
<td>29</td>
<td>24(82.76)</td>
<td>5(17.24)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apr. 21</td>
<td>62</td>
<td>50(80.65)</td>
<td>12(19.36)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>May 30</td>
<td>54</td>
<td>52(95.30)</td>
<td>2(3.70)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apr. 7</td>
<td>107</td>
<td>99(92.92)</td>
<td>8(7.08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>May 20</td>
<td>64</td>
<td>61(95.31)</td>
<td>2(3.13)</td>
<td>1(1.56)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>June 27</td>
<td>40</td>
<td>37(92.50)</td>
<td>1(2.50)</td>
<td>2(5.00)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dec. 3</td>
<td>38</td>
<td>36(84.77)</td>
<td>15(15.24)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apr. 15</td>
<td>36</td>
<td>32(67.51)</td>
<td>15(32.49)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apr. 27</td>
<td>272</td>
<td>237(87.13)</td>
<td>35(12.87)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>May 7</td>
<td>526</td>
<td>400(76.05)</td>
<td>126(23.95)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mar. 29</td>
<td>339</td>
<td>202(59.59)</td>
<td>137(40.41)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apr. 1</td>
<td>142</td>
<td>129(90.85)</td>
<td>13(9.16)</td>
<td>1(1.89)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>May 15</td>
<td>125</td>
<td>108(86.40)</td>
<td>14(11.20)</td>
<td>3(2.40)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apr. 27</td>
<td>273</td>
<td>255(93.41)</td>
<td>17(6.59)</td>
<td>1(0.37)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>May 7</td>
<td>136</td>
<td>122(87.71)</td>
<td>11(8.09)</td>
<td>3(2.21)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>June 26</td>
<td>75</td>
<td>67(89.33)</td>
<td>8(10.67)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apr. 15</td>
<td>186</td>
<td>179(96.24)</td>
<td>7(3.76)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apr. 14</td>
<td>186</td>
<td>179(96.24)</td>
<td>7(3.76)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apr. 13</td>
<td>186</td>
<td>179(96.24)</td>
<td>7(3.76)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>May 25</td>
<td>134</td>
<td>130(96.92)</td>
<td>4(3.08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aug. 10</td>
<td>63</td>
<td>61(96.83)</td>
<td>2(3.18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nov. 15</td>
<td>67</td>
<td>66(98.51)</td>
<td>1(1.49)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dec. 25</td>
<td>47</td>
<td>45(95.75)</td>
<td>2(4.26)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>'55</td>
<td>Feb. 22</td>
<td>41</td>
<td>38(92.68)</td>
<td>3(7.32)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jan. 4</td>
<td>381</td>
<td>253(65.41)</td>
<td>127(33.33)</td>
<td>1(0.26)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feb. 10</td>
<td>382</td>
<td>381(99.74)</td>
<td>1(0.26)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mar. 13</td>
<td>355</td>
<td>348(97.99)</td>
<td>7(2.01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apr. 5</td>
<td>123</td>
<td>38(30.89)</td>
<td>81(65.85)</td>
<td>4(3.25)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>May 6</td>
<td>372</td>
<td>363(97.98)</td>
<td>9(2.42)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apr. 22</td>
<td>268</td>
<td>267(95.63)</td>
<td>1(0.37)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>June 19</td>
<td>208</td>
<td>204(98.08)</td>
<td>4(1.92)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feb. 28</td>
<td>144</td>
<td>142(98.61)</td>
<td>2(1.39)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feb. 25</td>
<td>126</td>
<td>201(94.81)</td>
<td>11(5.19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mar. 5</td>
<td>164</td>
<td>157(95.73)</td>
<td>7(4.27)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>'56</td>
<td>Jan. 16</td>
<td>174</td>
<td>172(98.85)</td>
<td>1(0.58)</td>
<td>1(0.58)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feb. 15</td>
<td>225</td>
<td>221(97.79)</td>
<td>5(2.21)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dec. 12</td>
<td>1105</td>
<td>925(83.71)</td>
<td>175(15.84)</td>
<td>5(0.45)</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Landing Place</td>
<td>No.</td>
<td>Age 0</td>
<td>Age 1</td>
<td>Age 2</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>'56</td>
<td>Jan. 12</td>
<td>Tachibana</td>
<td>495</td>
<td>474(95.76)</td>
<td>21(4.24)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>March 28</td>
<td></td>
<td>397</td>
<td>381(95.97)</td>
<td>16(4.03)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mar. 21</td>
<td>Nakaze</td>
<td>184</td>
<td>183(95.55)</td>
<td>1(0.45)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apr. 10</td>
<td></td>
<td>815</td>
<td>800(98.76)</td>
<td>15(1.84)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>June 6</td>
<td>Hosho-shima</td>
<td>424</td>
<td>423(95.76)</td>
<td>1(0.24)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>May 26</td>
<td>Shikanose</td>
<td>650</td>
<td>620(95.39)</td>
<td>30(4.62)</td>
<td></td>
</tr>
<tr>
<td>'57</td>
<td>Jan. 7</td>
<td>Saizaki</td>
<td>854</td>
<td>847(98.18)</td>
<td>7(0.82)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apr. 11</td>
<td>Tachibana</td>
<td>578</td>
<td>565(95.51)</td>
<td>1(2.87)</td>
<td>1(0.27)</td>
</tr>
<tr>
<td></td>
<td>June 1</td>
<td></td>
<td>578</td>
<td>565(95.51)</td>
<td>1(2.87)</td>
<td>1(0.27)</td>
</tr>
<tr>
<td></td>
<td>May 16</td>
<td></td>
<td>578</td>
<td>565(95.51)</td>
<td>1(2.87)</td>
<td>1(0.27)</td>
</tr>
<tr>
<td></td>
<td>Feb. 21</td>
<td></td>
<td>694</td>
<td>687(98.99)</td>
<td>6(0.87)</td>
<td>1(0.14)</td>
</tr>
<tr>
<td></td>
<td>Apr. 16</td>
<td></td>
<td>694</td>
<td>687(98.99)</td>
<td>6(0.87)</td>
<td>1(0.14)</td>
</tr>
<tr>
<td></td>
<td>May 14</td>
<td></td>
<td>694</td>
<td>687(98.99)</td>
<td>6(0.87)</td>
<td>1(0.14)</td>
</tr>
<tr>
<td></td>
<td>June 1</td>
<td></td>
<td>694</td>
<td>687(98.99)</td>
<td>6(0.87)</td>
<td>1(0.14)</td>
</tr>
<tr>
<td>'58</td>
<td>Jan. 7</td>
<td>Saizaki</td>
<td>1170</td>
<td>1,036(88.56)</td>
<td>129(11.03)</td>
<td>5(0.43)</td>
</tr>
<tr>
<td></td>
<td>Apr. 1</td>
<td>Tachibana</td>
<td>578</td>
<td>566(95.26)</td>
<td>10(1.73)</td>
<td>10(1.62)</td>
</tr>
<tr>
<td></td>
<td>May 16</td>
<td></td>
<td>578</td>
<td>566(95.26)</td>
<td>10(1.73)</td>
<td>10(1.62)</td>
</tr>
<tr>
<td></td>
<td>Apr. 21</td>
<td></td>
<td>578</td>
<td>566(95.26)</td>
<td>10(1.73)</td>
<td>10(1.62)</td>
</tr>
<tr>
<td></td>
<td>Apr. 26</td>
<td></td>
<td>578</td>
<td>566(95.26)</td>
<td>10(1.73)</td>
<td>10(1.62)</td>
</tr>
<tr>
<td></td>
<td>May 16</td>
<td></td>
<td>578</td>
<td>566(95.26)</td>
<td>10(1.73)</td>
<td>10(1.62)</td>
</tr>
<tr>
<td>'59</td>
<td>Jan. 7</td>
<td>Tachibana</td>
<td>900</td>
<td>893(99.22)</td>
<td>7(0.78)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apr. 16</td>
<td>Tachibana</td>
<td>456</td>
<td>454(95.67)</td>
<td>15(5.37)</td>
<td>5(1.10)</td>
</tr>
<tr>
<td></td>
<td>May 1</td>
<td>Nakaze</td>
<td>528</td>
<td>515(97.54)</td>
<td>6(1.71)</td>
<td>4(0.76)</td>
</tr>
<tr>
<td>'60</td>
<td>May 3</td>
<td>Nakaze</td>
<td>591</td>
<td>561(94.92)</td>
<td>29(4.91)</td>
<td>1(0.17)</td>
</tr>
<tr>
<td></td>
<td>June 1</td>
<td>Nakaza</td>
<td>1059</td>
<td>1,039(98.11)</td>
<td>20(1.89)</td>
<td></td>
</tr>
<tr>
<td>'61</td>
<td>Apr. 5</td>
<td>Tachibana</td>
<td>125</td>
<td>103(80.00)</td>
<td>25(20.00)</td>
<td></td>
</tr>
<tr>
<td>'62</td>
<td>Apr. 5</td>
<td>Tachibana</td>
<td>125</td>
<td>103(80.00)</td>
<td>25(20.00)</td>
<td></td>
</tr>
<tr>
<td>'63</td>
<td>July 3</td>
<td>Takinokuchi</td>
<td>384</td>
<td>350(91.15)</td>
<td>34(8.85)</td>
<td></td>
</tr>
<tr>
<td>'64</td>
<td>May 1</td>
<td>Hakara-shima</td>
<td>2136</td>
<td>2,054(96.16)</td>
<td>80(3.75)</td>
<td>2(0.09)</td>
</tr>
<tr>
<td>'65</td>
<td>Jan. 15</td>
<td>Nakaza</td>
<td>1059</td>
<td>1,039(98.11)</td>
<td>20(1.89)</td>
<td></td>
</tr>
</tbody>
</table>
調査結果

イカナゴ稚魚が漁獲されはじめるのは3月中旬ごろからで、さきにも触れたように飼育上の漁獲物は、ほとんど稚魚で占められていることが多い。第45表で稚魚の割合が異状に小さい地が、3月に3回、4月に2回、5月に2回、6月に1回みられる。筆者からの意見では、この現象は漁場場でみかけるが、漁期の初期では生産した稚魚が潮流によって漁場から去った後、親魚と稚魚の捕獲が混在されるようである。イカナゴ
稚魚の漁獲への加入は3〜4月で、漁場と漁業者によっては、漁獲物の全部が稚魚で占められるばかりが多い。この稚魚の割合を通じて年々の年令組成は定まるが、当然海域、魚種によっても添加率は異なる。

第45表から年令組成のほぼ安定したと思われる5〜7月の資料について、1950年から1960年までの年令組成の百分率を示すと第77図のように、これは年によって0才魚の添加量の割合が異なることを示している。

Table 46. Frequency distribution of the age composition in percent.

<table>
<thead>
<tr>
<th>0-Year fish</th>
<th>>70</th>
<th>70-75</th>
<th>75-80</th>
<th>80-85</th>
<th>85-90</th>
<th>90-95</th>
<th>95-100</th>
<th>%</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb.</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar.</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr.</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>May</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>18</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>June</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>11</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>July</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec.</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1-Year fish</th>
<th>0-5</th>
<th>5-10</th>
<th>10-15</th>
<th>15-20</th>
<th>20-25</th>
<th>25-30</th>
<th>30%</th>
<th>%</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan.</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb.</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td></td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar.</td>
<td>12</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr.</td>
<td>20</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>May</td>
<td>11</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>June</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>July</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov.</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec.</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2-Year fish</th>
<th>0-5</th>
<th>5-10</th>
<th>10-15</th>
<th>15-20</th>
<th>20-25</th>
<th>25-30</th>
<th>30%</th>
<th>%</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan.</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb.</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr.</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>May</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>June</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>July</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec.</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3-Year fish</th>
<th>0-5</th>
<th>5-10</th>
<th>10-15</th>
<th>15-20</th>
<th>20-25</th>
<th>25-30</th>
<th>30%</th>
<th>%</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 77. Yearly distribution of the age composition, obtained in the period of May to July. Solid circles, 0-year fish; crosses, soft circles, 1-year fish.

第45表から一応海域の区別を無視して、月別に年令組成の百分率を図で示すと、第46表のようにする。これによって年令組成をみると、0才魚は80％以上、1才魚は20％以下とみなされ、第78図の月別年令組成からもこのことは推察される。
浜田（1966）は、船びき網とパッチ網漁獲イカナゴの年令組成の相異について検討し、パッチ網による漁獲イカナゴが年令の異なる親魚を全部含んでいる点から、パッチ網漁獲イカナゴの年令組成を採用した。これによると、親魚のうち才群の占める割合は、年によりかなりの相異がみられ、1956—1964年を通じて平均54.7％になると報告した。したがって、三原水道海域の0才魚（浜田は1夏を過ぎると才魚とした）の割合は、浜田（1966）をかなり上回るようであるが、これは漁具による漁獲イカナゴの年令組成の差に基づくものと推測される。また浜田（1966）は、親魚のうち才魚の数の占める割合およびこれらの親魚から発生すると考えられる翌年の0才魚の漁獲量との相関は、r = 0.868であるが、親魚のうち才魚が占める割合が多い年の翌年には、当才魚の漁獲量が少ないと述べた。

同様なことはニコルスキー（1964）も述べているが、第45表から数値の年のイカナゴ年令組成を、0才魚と1～2才魚との割合8：2として漁獲親魚の年令組成をみると、1952、1953、1955、1965年が幾分大きく異なり、最も漁獲量とその対照は明らかでない。すなわち、漁獲量は漁具、漁場特性、繁殖の分散、環境変化など、多くの要因に影響を受けるためであろう。

第8節 生殖腺

第1項 生殖腺の季節的変化

イカナゴの産卵は、水温が15℃以下で開始されることが第2項に述べるが、生殖腺の発達状況からも産卵期は推定できるはずである。委託資料の精密測定結果から生殖腺係数（G.W./B.W.×100）を求め、比較的資料の豊富な育苗産のイカナゴについて生殖腺係数の推移を示すと、第79図の通りである。

調査結果

第79図によると、育苗では生殖腺係数は、12月初旬ごろ急激に増大し、中旬に最大に達するが、下旬には減少する。また大型魚（おもに1才魚）の生殖腺係数は、12月では小型魚よりも大きく、1月では反対に小型魚が大型魚にささる。

第80図は、兵庫、岡山各県水産試験場委託調査資料（1959—1961）から、雌雄別の生殖腺長と生殖腺重量との関係を示したものである。

これによると、生殖腺長と生殖腺重量とは函数関係にあるといえる。
第2項 水温と卵径変化
イカナゴの産卵期は年により遅速はみられるが、瀬戸内海では大体12月下旬—1月上旬が産卵期に当たり、さきに井上（1952）は、内海区水産研究所尾道試験地の沿岸沿時観測資料から産卵期の水温を15℃以下と推定し、産卵期の水温がイカナゴの繁殖を支配する重要な因子であると述べた。本研究は、産卵期前の親魚を室内水槽に飼育して、水温変化に対する卵径の変化を測定し、水温と産卵期との関係を求めたと考えた。しかしながら、水温調節に使用した電気恒温器は、精度の問題に難点があり、障害排除に努めたが一部では期待した水温が得られなかった。

研究方法
使用した水槽は7個で、水量および砂量は第47表の通りである。なお各水槽とも流水方式で流し水槽は毎日貯水タンクに揚水したものので、日々の流量はかなり変動した。

Table 47. Constructional conditions of the water tanks used to observe the relation between spawning of sand-lance and water temperature.

<table>
<thead>
<tr>
<th>Tank No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume of water (l)</td>
<td>132.5</td>
<td>51.0</td>
<td>75.0</td>
<td>11.0</td>
<td>16.0</td>
<td>13.0</td>
<td>41.0</td>
</tr>
<tr>
<td>sand (l)</td>
<td>46.5</td>
<td>30.6</td>
<td>29.0</td>
<td>9.4</td>
<td>10.0</td>
<td>11.0</td>
<td>8.0</td>
</tr>
<tr>
<td>inflow (m³/min)</td>
<td>51.6</td>
<td>18.0</td>
<td>52.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

第1回の実験は、1954年12月11日から同29日まで第1、2、3水槽を使用し、水温は13.6—16.2℃、14.4—19.5℃、8.2—15.9℃とした。
第2回の実験は、12月17日から第4、5、6水槽を使用し、第4水槽（水温16.5—19.4℃）は12月21日、第5水槽（水温19.2—12.0℃）は12月23日、第6水槽（水温4.6—14.5℃）は翌年1月29日まで飼育した。
第3回の実験は、12月21日から第4、5水槽を使用し、第4水槽（水温19.6—22.0℃）は翌年1月29日、第5水槽（水温14.4—10.0℃）は翌年2月16日まで飼育した。
第4回の実験は、12月24日から翌年1月11日まで第7水槽を使用して室温で飼育した。
第5回の実験は、12月29日から翌年1月29日まで第1、2、3水槽を使用して、それぞれ水温5.5—11.0℃、12.7—18.0℃、12.8—20.4℃に飼育した。

水温ならびに飼育魚の観察は、毎日午前2時から4時間間隔で1日6回とし、適時飼育魚を解剖して卵径を測定した。

調査結果
供試魚の体長は6.0—8.0cmで、体長モードは12月4、17、29日のものが6.8—7.8cm；12月21、24日のものが6.6—7.6cmで、前者の体長がやや小さく。また1才魚の混入率は13.36—40.41％で、12月29日までのものが最も大きくなり、12月21日のものが最も小さい。第31図A—Eは、卵径モードの変動を図示したものである。また第48表は、卵径2.9—3.9cm（×50）のものについて熟卵と未熟卵を区別したものです。その区分基準は、卵形、色彩および卵径の状態によって。第48表から、イカナゴの熟卵は卵径3.3cm（×50）以上のもので、それ以下は未熟卵といえる。
Fig. 81. Variabilities of the mode of ovarian ovum diameter for specimens cultured at various water temperatures. Crosses, room temperature; solid circles, 15°C; triangles, 18°C.

Table 48. Compositions by maturities of the egg diameter.

<table>
<thead>
<tr>
<th>Egg diameter (×50cm)</th>
<th>2.9—3.0</th>
<th>3.0—3.1</th>
<th>3.1—3.2</th>
<th>3.2—3.3</th>
<th>3.3—3.4</th>
<th>3.4—3.5</th>
<th>3.5—3.6</th>
<th>3.6—3.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mature</td>
<td>——</td>
<td>——</td>
<td>1</td>
<td>5</td>
<td>27</td>
<td>55</td>
<td>111</td>
<td>119</td>
</tr>
<tr>
<td>Inmature</td>
<td>55</td>
<td>35</td>
<td>23</td>
<td>14</td>
<td>8</td>
<td>——</td>
<td>——</td>
<td>——</td>
</tr>
</tbody>
</table>

第81図 A→E は、それぞれ第 1 回から第 5 回の実験結果を示す。第81図 A では、室温（平均水温11.17°C）で飼育したイカナゴ卵は、卵径3.4—3.6cm（×50）にモードがあり熟卵率は50%に達したが、13.6—16.2°C、14.4—19.5°Cで飼育したイカナゴ卵は、両者とも卵径2.6—2.8cm（×50）にモードがあり熟卵は全く得られなかった。BからDの実験で、室温に飼育したイカナゴは熟卵に達することを示した。また実験Cの水温11.6—20.0°Cに飼育した卵は、イカナゴ卵の卵径は実験前のものより著しく長縮した。熟卵卵の一部を飼育した実験Eでは、水温の影響による差は認められなかった。いずれの卵卵にも卵膜が破損しやすくなり、一部では変質肥大したのがみられた。さらに0才魚と1才魚との熟卵卵について検討したが、両者の熟卵卵の差は認められなかった。

以上の実験から、イカナゴ卵は、水温15°C以下で熟卵卵に達することがほぼ確められた。また1956—1957年の漁場調査でも、産卵時水温は12.0—14.5°Cを示し、さきに井上が報告した結果と一致する。なお卵径について Meek, A. (1916) と比較すると, A. tobianus の卵径は不規則で0.7—0.8mmと述べているので,
A. *personatus* はほんの少しあき、幾分小さ目と思われる。

第3項 水温と生殖腺重量

生殖腺重量は、適度が進むにしたがい増重するが、個体差が著しい。また一般的な傾向として、生殖腺重量は体長に正比例する。さらに卵巣と水温との関係について調査し、イカナゴ卵巣は水温15℃以下で熟卵に達することを述べたが、同一資料にもとづいて生殖腺重量の推移を追求した。

調査結果

第49表は、生殖腺重量の蓄積中における推移を示したものである。卵巣重量の蓄積による変化は卵径の増大と同様で、水温15℃以上では増重を認められない。これに反して精巣重量は15℃以上で増重し、1月下旬ごろには精巣重量は急速に減少する。なお本実験は気温蓄積のため体重は減少するので、体重のかわりに体長を基準とした。

第4項 孕卵数

イカナゴの卵卵数については、井上（1949, 1952）および横井、外山（1957）の報告があり、横井は1才群と2才群の群別に生産的傾向があらわれると報告した。

筆者らは1950年12月12日採捕した材料について計測するとともに、さらに1954年12月29日の材料について、かなり詳細な検討を加えた。

調査方法

1950年12月のものについては、各個体ごとに卵巣重量を平均したのち、一部を卵量、計測して卵卵数を算出した。また1954年12月29日の材料については、個体ごとに左右の卵巣または精巣を摘出し、卵巣については上記の方法で卵数を測定し、同時に卵巣をも測定した。

<p>| Table 49. Coefficients of gonad weight (gonad weight/body length) for the specimens kept under starved condition at various water temperatures. Note: Body length, instead of body weight, is used to obtain the coefficients. |
|---|---|---|---|---|---|---|---|---|---|---|---|---|</p>
<table>
<thead>
<tr>
<th>Sex</th>
<th>Date</th>
<th>Average W. T.</th>
<th>G. W. x 100</th>
<th>0 ～ 1</th>
<th>1.2</th>
<th>2～4</th>
<th>3.6</th>
<th>4.8</th>
<th>6.0</th>
<th>7.2</th>
<th>8.4</th>
<th>8.6～9.6</th>
<th>9.8～10.8</th>
<th>10.8～12.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ♀</td>
<td>Dec. 4</td>
<td>---</td>
<td>90</td>
<td>54</td>
<td>26</td>
<td>9</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>12.80</td>
<td>18</td>
<td>12</td>
<td>2</td>
<td>4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>11.62</td>
<td>42</td>
<td>19</td>
<td>14</td>
<td>7</td>
<td>2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>11.48</td>
<td>9</td>
<td>1</td>
<td>8</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>14.87</td>
<td>10</td>
<td>---</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>18.13</td>
<td>12</td>
<td>---</td>
<td>11</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>18.17</td>
<td>22</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>19.16</td>
<td>18</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>3</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>18.17</td>
<td>16</td>
<td>7</td>
<td>9</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>♂</td>
<td>Dec. 4</td>
<td>---</td>
<td>88</td>
<td>22</td>
<td>16</td>
<td>25</td>
<td>20</td>
<td>5</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>---</td>
<td>8</td>
<td>---</td>
<td>6</td>
<td>2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>---</td>
<td>10</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>---</td>
<td>10</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>---</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>---</td>
<td>7</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>---</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>---</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>---</td>
<td>11</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Sex</td>
<td>Date</td>
<td>Average G.W. (B.W. × 100)</td>
<td>1.2</td>
<td>2.4</td>
<td>3.6</td>
<td>4.8</td>
<td>6.0</td>
<td>7.2</td>
<td>8.4</td>
<td>9.6</td>
<td>10.8</td>
<td>12.0</td>
<td>13.2</td>
<td>14.4</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>---------------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>2.♀</td>
<td>Dec. 17</td>
<td>118</td>
<td>7</td>
<td>33</td>
<td>50</td>
<td>26</td>
<td>2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>10.68</td>
<td>18</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>2</td>
<td>2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>18.39</td>
<td>49</td>
<td>1</td>
<td>6</td>
<td>25</td>
<td>14</td>
<td>2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>10.81</td>
<td>36</td>
<td>5</td>
<td>8</td>
<td>11</td>
<td>10</td>
<td>2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>10.60</td>
<td>28</td>
<td>1</td>
<td>5</td>
<td>15</td>
<td>1</td>
<td>3</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Jan. 4</td>
<td>9.47</td>
<td>20</td>
<td>---</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>8.42</td>
<td>26</td>
<td>---</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>10</td>
<td>6</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3.♀</td>
<td>Dec. 21</td>
<td>29</td>
<td>1</td>
<td>19</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>10.76</td>
<td>67</td>
<td>15</td>
<td>33</td>
<td>11</td>
<td>2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>11.64</td>
<td>27</td>
<td>7</td>
<td>15</td>
<td>4</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Jan. 4</td>
<td>9.73</td>
<td>23</td>
<td>---</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>18.43</td>
<td>9</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>8.80</td>
<td>34</td>
<td>---</td>
<td>3</td>
<td>4</td>
<td>18</td>
<td>7</td>
<td>2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>18.07</td>
<td>11</td>
<td>9</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Feb. 16</td>
<td>47</td>
<td>1</td>
<td>6</td>
<td>9</td>
<td>19</td>
<td>10</td>
<td>0</td>
<td>2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5.♀</td>
<td>Dec. 24</td>
<td>26</td>
<td>3</td>
<td>7</td>
<td>12</td>
<td>4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>10.30</td>
<td>84</td>
<td>---</td>
<td>10</td>
<td>29</td>
<td>27</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Jan. 4</td>
<td>9.16</td>
<td>30</td>
<td>---</td>
<td>2</td>
<td>9</td>
<td>11</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>8.52</td>
<td>30</td>
<td>---</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Feb. 28</td>
<td>61</td>
<td>4</td>
<td>1</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>9</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Apr. 11</td>
<td>44</td>
<td>2</td>
<td>2</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>82</td>
<td>2</td>
<td>7</td>
<td>40</td>
<td>25</td>
<td>8</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Jan. 4</td>
<td>20</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>19</td>
<td>11</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Feb. 28</td>
<td>43</td>
<td>43</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Apr. 11</td>
<td>10</td>
<td>10</td>
<td>---</td>
</tr>
<tr>
<td>5.♀</td>
<td>Dec. 29</td>
<td>122</td>
<td>8</td>
<td>25</td>
<td>38</td>
<td>29</td>
<td>13</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Jan. 4</td>
<td>9.68</td>
<td>16</td>
<td>---</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>14.82</td>
<td>19</td>
<td>---</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>17.30</td>
<td>18</td>
<td>---</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>8.65</td>
<td>35</td>
<td>---</td>
<td>1</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>15.40</td>
<td>35</td>
<td>---</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>18.06</td>
<td>31</td>
<td>---</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>8.♀</td>
<td>Dec. 29</td>
<td>146</td>
<td>2</td>
<td>22</td>
<td>43</td>
<td>51</td>
<td>22</td>
<td>6</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Jan. 4</td>
<td>13</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>13</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>12</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>36</td>
<td>15</td>
<td>11</td>
<td>9</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>32</td>
<td>28</td>
<td>---</td>
<td>4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>35</td>
<td>34</td>
<td>---</td>
</tr>
</tbody>
</table>
Table 50. Numbers of the ovarian ova of the specimens, 7—8 cm in body length.

<table>
<thead>
<tr>
<th>Year</th>
<th>No. of total specimens</th>
<th>A. V.</th>
<th>S. D.</th>
<th>C. V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1948</td>
<td>141</td>
<td>1966.3±33.7</td>
<td>593.4±23.8</td>
<td>30.18±1.32</td>
</tr>
<tr>
<td>'49</td>
<td>128</td>
<td>1980.5±36.9</td>
<td>618.4±26.1</td>
<td>31.23±1.44</td>
</tr>
<tr>
<td>'50</td>
<td>108</td>
<td>1588.0±27.9</td>
<td>429.4±19.7</td>
<td>27.04±1.33</td>
</tr>
<tr>
<td>'54</td>
<td>59</td>
<td>2402.5±57.3</td>
<td>652.6±40.5</td>
<td>27.16±1.81</td>
</tr>
</tbody>
</table>

Fig. 82. Relation between the number of ovarian ova and the body length, obtained in 1948.
これによると、1950年が最も小さく、1954年が最も大きい。すなわち休長が同じでも、年によって卵卵数に差があることを示すもので、これは魚の肥満度に関係が深い。
ニコルスキー（1964）は、アムール河のカラフトマスの平均卵卵数について、食物の保障度によって卵数は変化し、豊漁年には同一体長の個体の多産性が不漁年にくらいで低下するという。イカナゴの豊漁年には、飼料の不足から魚体はやせ型となり卵卵数が低下するものと思われる。
2. 生殖腺の左右別の相違

A 精巣重量

左右の平均精巣重量は第51表に示す通りで、右側精巣重量＞左側精巣重量となる。すなわち、雄122尾の測定結果は、左側の大きいもの19尾、右側の大きいもの103尾で、第86図は精巣重量百分率を示す。

Table 51. Gonad weight by sexes and by sides.

<table>
<thead>
<tr>
<th>No. of specimens</th>
<th>Left gonad</th>
<th></th>
<th>Right gonad</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A. V.</td>
<td>S. D.</td>
<td>C. V.</td>
<td>A. V.</td>
</tr>
<tr>
<td>Male</td>
<td>141.64±3.36</td>
<td>55.07±2.36</td>
<td>38.88±1.92</td>
<td>161.80±3.83</td>
</tr>
<tr>
<td>Female</td>
<td>171.92±4.67</td>
<td>70.63±3.30</td>
<td>41.08±2.22</td>
<td>192.40±5.25</td>
</tr>
</tbody>
</table>

Fig. 85. Relation between the number of ovarian ova and the body length, obtained in 1954.

Fig. 86. Spermary weight composition.
Solid circles, left testis; soft circles, right testis.

2. 卵巣重量

卵巣重量も第51表、第87図に示すように、雌104尾のうち左側の大きいもの18尾、右側の大きいもの86尾で、生殖腺重量は右側のものが大きいといえる。
3. 卵数と卵径

第52表は、卵巣について左右の卵数および卵径の平均値を示す。

Table 52. Numbers and diameter of the ovarian ova.

<table>
<thead>
<tr>
<th>Female</th>
<th>Left ovary</th>
<th>Right ovary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A. V</td>
<td>S. D.</td>
</tr>
<tr>
<td>No. of egg</td>
<td>1306.7±35.2</td>
<td>532.3±24.9</td>
</tr>
<tr>
<td>Egg diameter (×50cm)</td>
<td>3.498±0.014</td>
<td>0.207±0.01</td>
</tr>
</tbody>
</table>

卵数は、右側卵巣がやや多く、左側の多いもの27尾、右側の多いもの77尾であった。また卵径も右側がやや大きく、左側の大きいもの35尾、右側の大きいもの65尾で、左右等しい卵が4尾であった。第88、89図は、卵数、卵径の各区分に対する百分率を示す。
以上の結果を総合すれば、卵巣ともほぼ右側が大きいといえる。

第5項 孕卵魚の時期的変化

イカナゴの産卵期は、海水の温度と密接な関係があるが、年によって産卵期が2回滑らされることがある。漁業者は第1回目の稚魚を寒仔、第2回目の稚魚を春仔と呼び、春仔の多い年は豊漁という。また春仔が出現するのは寒冷年に多く、したがって寒冷年は豊漁年といわれている。寒仔は12月〜1月、春仔は1〜2月に孵化したものを指すようで、体長以外には明確な区別はない。すなわち、4月の袋付で漁獲した魚体に大型、小型の魚群が混在するばかり、大型の稚魚を寒仔、小型の稚魚を春仔と呼んでいるに過ぎない。井上（1962）は、寒仔、春仔の生ずる原因を、イカナゴ親魚の生活場が気温の影響を受け易いか、どうかによって決定するだろうと推定した。イカナゴの孵化率は、水温が8°C前後で最も高く（後述）水温の高低に伴い孵化期間に短縮を生ずるが、春仔の大量発生した年の体長組成は、明らかに産卵盛期が2回あったことが、1948、1961、1965年にみられる。12月下旬1回目の産卵を終えた親魚が、2回目の産卵を行なうか否かを明らかにするため、産卵前の孕卵率と産卵後の孕卵率および卵数について調査した。

調査結果

1. 孕卵率

第90図は、親魚の孕卵率を示す。

これらの資料では、最初の産卵前の孕卵率は、年、採捕場所、採捕時期により多少変化するが、12月では大体65〜100％で、第1回目の産卵を終えた親魚の孕卵率は、1。2の例外を除くと、30％以下に低下する。しかし親魚が1回の産卵で全部放卵、放精するものではないことは明らかで、さきの井上（1952）の見解を多少修正する必要がある。同様の現象は、1961年鰤魚出現状況ならびに鰤魚体長組成からも推定される。しかし、1965年の稚魚出現状況（未発表）は、明らかに産卵期による産卵時期の差によって寒仔と春仔が生じたもので、これからの混合によって漁獲された稚魚体長組成が双峰型となった。したがって、寒仔、春仔の
生ずる原因は、産卵期の水温による親魚の生理的なものと、産卵前後の水温の相違に基づく産卵期のずれとによるものの2つの原因によるものと思われる。

2. 残 卵 数

第53表は、第1回目の産卵を終えた親魚の残卵数を示す。

Table 53. Change of the ovarian ova existing after the 1st spawning.

<table>
<thead>
<tr>
<th>Landing place</th>
<th>Date</th>
<th>No. of eggs</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>1,000</th>
<th>1,500</th>
<th>2,000</th>
<th>2,500</th>
<th>3,000</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yoshiwa</td>
<td>1948 Dec. 30</td>
<td>2</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Saizaki</td>
<td>'50 Dec. 29</td>
<td>14</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>'51 Jan. 10</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Yoshiwa</td>
<td>'51 Dec. 28</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Saizaki</td>
<td>'52 Jan. 2</td>
<td>1</td>
<td>1</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>'57 Jan. 7</td>
<td>59</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>99</td>
</tr>
<tr>
<td>Nakaze</td>
<td>'57 Feb. 21</td>
<td>9</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Saizaki</td>
<td>'58 Jan. 7</td>
<td>9</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

第1回産卵後の残卵数は、大体100粒以下とみなされるが、1951年の1月10日のように特異な現象が見られる。資料は数例に過ぎないが、年により一部の親魚が第1回目の産卵に参加せず、第2回目の産卵に参加することが推察できる。
第9節 水温と孵化率

産卵期は、水温によって速速を生ずることは常識で、イカナゴは15°C以下で産卵するが、イカナゴ卵の孵化と水温との関係について検討した。従来イカナゴ卵について、水温が低下するほど繁殖であるといわれ、井上（1952）も寒仔と春仔の生ずる年は、産卵期の水温が低く産卵が長期に及ぶため、漁期が長く繁殖の原因をなすと述べた。本研究は、主としてイカナゴ卵の孵化適水温を調べることを目的とした。

研究方法

1. イカナゴ卵孵化槽

孵化実験のため、第91図のような木製水槽を用意した。水槽はガラス板の隔壁で区画し、各水槽はガラス製プロペラで水温が均一に保たれるように常にかく拌した。つぎに各区画に水槽に1分のおびーカーを2個

Fig. 91. Structure of the incubator employed.
Table 54. Relation between the water temperature and the hatching conditions of eggs fertilized artificially.
(Numerals within parentheses represent percentage.)

<table>
<thead>
<tr>
<th>Tank No. and W.T. (°C)</th>
<th>(1) 6.19</th>
<th>(2) 8.30</th>
<th>(3) 10.48</th>
<th>(4) 12.85</th>
<th>(5) 15.741</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total eggs</td>
<td>1,216</td>
<td>1,166</td>
<td>1,013</td>
<td>1,176</td>
<td>1,247</td>
</tr>
<tr>
<td>No. of hatches</td>
<td>46 (3.78)</td>
<td>36 (3.09)</td>
<td>59 (5.82)</td>
<td>137 (11.29)</td>
<td>77 (6.17)</td>
</tr>
<tr>
<td>(1) Normal</td>
<td>31 (2.55)</td>
<td>25 (2.14)</td>
<td>41 (4.05)</td>
<td>99 (8.15)</td>
<td>70 (5.61)</td>
</tr>
<tr>
<td>(2) Abnormal</td>
<td>15 (1.23)</td>
<td>11 (0.94)</td>
<td>18 (1.78)</td>
<td>38 (3.13)</td>
<td>9 (0.77)</td>
</tr>
<tr>
<td>(A) No. of deaths after appearance of eye</td>
<td>65 (5.35)</td>
<td>13 (1.11)</td>
<td>71 (7.01)</td>
<td>99 (8.15)</td>
<td>134 (11.39)</td>
</tr>
<tr>
<td>(B) Total</td>
<td>111 (9.13)</td>
<td>49 (4.20)</td>
<td>130 (12.83)</td>
<td>236 (19.44)</td>
<td>182 (15.48)</td>
</tr>
<tr>
<td>(C) (2)/(B) (%)</td>
<td>32.61</td>
<td>30.56</td>
<td>30.51</td>
<td>27.74</td>
<td>18.75</td>
</tr>
<tr>
<td>Days required for the 1st hatch</td>
<td>37</td>
<td>34</td>
<td>26</td>
<td>26</td>
<td>21</td>
</tr>
</tbody>
</table>

Fig. 92. Experimental results on the effects of water temperature on the artificial incubation.
△ Normal hatch.
○ Abnormal hatch.
× Eye developing.

2. 箇試方

卵子の入れたビーカーの每夜每朝1回孵化した。卵子を個別に浮遊させ、頭から尾端まで1時間に浸漬して卵殻に人工孵化を

(1) 人工孵化部

1955年12月28日，卵殻を割いたもので，孵化器を入れた箱に入れて頭，尾

(2) 人工孵化部

に人工孵化を1回行なう。卵子は市販の1種に

14日もの時，卵殻を割いたもので，孵化器を入れた箱に入れて頭，尾

(3) 人工孵化部

に人工孵化を1回行なう。卵子は市販の1種に

15日もの時，卵殻を割いたもので，孵化器を入れた箱に入れて頭，尾

(4) 人工孵化部

に人工孵化を1回行なう。卵子は市販の1種に

16日もの時，卵殻を割いたもので，孵化器を入れた箱に入れて頭，尾

(5) 人工孵化部

に人工孵化を1回行なう。卵子は市販の1種に

14日もの時，卵殻を割いたもので，孵化器を入れた箱に入れて頭，尾
Table 55. Experimental results on the effects of water temperature to the development of eggs.

<table>
<thead>
<tr>
<th>Date</th>
<th>Items</th>
<th>Tank</th>
<th>No. of hatch</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W. T.</td>
<td>No. 1</td>
<td>No. 2</td>
<td>No. 3</td>
</tr>
<tr>
<td></td>
<td>(°C)(1)</td>
<td>8.4~9.2</td>
<td>9.4~9.8</td>
<td>11.0~11.2</td>
</tr>
<tr>
<td>1954 Dec.</td>
<td>Development (2)</td>
<td>5.6~8.0</td>
<td>8.0~3.8</td>
<td>9.8~11.1</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>(1)</td>
<td>5.6~8.0</td>
<td>8.0~3.8</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>6.0~6.5</td>
<td>7.9~8.6</td>
<td>9.8~11.2</td>
</tr>
<tr>
<td>'55 Jan.</td>
<td>(1)</td>
<td>5.5~6.2</td>
<td>7.4~8.0</td>
<td>10.0~10.8</td>
</tr>
<tr>
<td>1</td>
<td>(2)</td>
<td>9</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>(1)</td>
<td>5.4~5.9</td>
<td>7.4~7.9</td>
<td>10.0~10.4</td>
</tr>
<tr>
<td>(2)</td>
<td>10</td>
<td>13</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>(1)</td>
<td>4.6~5.9</td>
<td>6.6~7.7</td>
<td>9.3~10.2</td>
</tr>
<tr>
<td>(2)</td>
<td>12</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>(1)</td>
<td>6.0~7.5</td>
<td>8.2~8.9</td>
<td>10.2~11.2</td>
</tr>
<tr>
<td>(2)</td>
<td>14</td>
<td>16</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>(1)</td>
<td>5.8~7.1</td>
<td>8.2~8.9</td>
<td>10.8~11.7</td>
</tr>
<tr>
<td>(2)</td>
<td>14</td>
<td>17</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>(1)</td>
<td>5.0~7.4</td>
<td>7.0~9.4</td>
<td>9.5~11.2</td>
</tr>
<tr>
<td>(2)</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>(1)</td>
<td>5.6~7.1</td>
<td>7.7~9.6</td>
<td>9.8~11.2</td>
</tr>
<tr>
<td>(2)</td>
<td>15</td>
<td>19</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>8</td>
<td>(1)</td>
<td>5.9~7.4</td>
<td>8.1~9.4</td>
<td>10.2~11.2</td>
</tr>
<tr>
<td>(2)</td>
<td>16</td>
<td>19</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>9</td>
<td>(1)</td>
<td>5.0~5.8</td>
<td>7.4~7.9</td>
<td>9.6~10.2</td>
</tr>
<tr>
<td>(2)</td>
<td>16</td>
<td>19</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>10</td>
<td>(1)</td>
<td>4.9~6.0</td>
<td>7.2~7.8</td>
<td>9.6~10.4</td>
</tr>
<tr>
<td>(2)</td>
<td></td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>11</td>
<td>(1)</td>
<td>5.3~5.8</td>
<td>7.0~7.7</td>
<td>9.5~10.2</td>
</tr>
<tr>
<td>(2)</td>
<td></td>
<td>A B</td>
<td>1 0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>(1)</td>
<td>4.9~6.0</td>
<td>6.8~8.0</td>
<td>9.3~10.6</td>
</tr>
<tr>
<td>(2)</td>
<td></td>
<td>A B</td>
<td>1 3 1</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Items</td>
<td>Tank</td>
<td>Note</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>------</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>55 Jan. 13</td>
<td>(1)</td>
<td>5.7~6.2</td>
<td>7.6~8.4</td>
<td>10.0~11.2</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>6.0~6.6</td>
<td>7.6~8.8</td>
<td>10.0~11.8</td>
</tr>
<tr>
<td>14</td>
<td>(1)</td>
<td>6.2~6.4</td>
<td>8.4~8.6</td>
<td>10.9~11.4</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>5.2~6.2</td>
<td>6.8~8.2</td>
<td>9.0~10.9</td>
</tr>
<tr>
<td>17</td>
<td>(1)</td>
<td>4.6~5.9</td>
<td>6.4~8.0</td>
<td>8.8~10.8</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>5.8~6.7</td>
<td>8.0~8.8</td>
<td>10.8~11.2</td>
</tr>
<tr>
<td>20</td>
<td>(1)</td>
<td>5.1~5.8</td>
<td>7.4~8.1</td>
<td>9.8~10.6</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>5.2~5.4</td>
<td>7.3~8.0</td>
<td>9.8~10.8</td>
</tr>
<tr>
<td>23</td>
<td>(1)</td>
<td>5.7~7.4</td>
<td>8.1~9.4</td>
<td>10.9~11.8</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>6.2~6.4</td>
<td>8.6~9.4</td>
<td>11.2~12.4</td>
</tr>
<tr>
<td>25</td>
<td>(1)</td>
<td>5.6~6.4</td>
<td>8.0~9.0</td>
<td>10.8~11.7</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>6.4~7.4</td>
<td>8.6~9.4</td>
<td>11.2~12.4</td>
</tr>
<tr>
<td>27</td>
<td>(1)</td>
<td>5.6~6.4</td>
<td>8.0~8.8</td>
<td>10.5~11.4</td>
</tr>
<tr>
<td>Date</td>
<td>Items</td>
<td>Tank</td>
<td>Note</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>'55 Jan. 28</td>
<td>(1)</td>
<td>5.1~7.7</td>
<td>7.1~9.1 A B A B x x △ △ 2 10 1(1) 1(1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>6.5~7.8</td>
<td>8.4~9.2 A B A B x 2 4 0 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td></td>
<td>6.2~7.5 A B A B △ x 3 10 2 0 0 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>6.4~8.2 A B A B △ x 0 1 0 4 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.7~6.9 A B A B △ x x 2(2) 14(3)</td>
<td></td>
</tr>
<tr>
<td>Feb. 1</td>
<td>(1)</td>
<td>4.8~7.3</td>
<td>6.8~9.2 A B A B △ x x 0 1 0 6 7 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>6.2~7.0</td>
<td>8.2~9.6 A B A B △ x △ 12(2) 20(12)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td>6.1~7.1 A B A B △ x △ 12(1) 14(1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td>4.2~6.8 A B A B △ x △ 2(2) 1 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td>6.2~7.0 A B △ △ 4(2) (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td>6.4~7.8 A B △ △ (6) 0 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td></td>
<td>6.1~7.9 A B △ △ 0 3(1) 1 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td>7.5~8.2 A B △ △ 10(5) 3 10 11 6 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Specific gravity
<table>
<thead>
<tr>
<th>Date</th>
<th>Items</th>
<th>Tank</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>'55 Feb. 12</td>
<td>(1)</td>
<td>5.4–6.8</td>
<td>Specific gravity</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>6.6–8.0</td>
<td>23.39</td>
</tr>
<tr>
<td>13</td>
<td>(1)</td>
<td>6.8–7.7</td>
<td>23.87</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>5.0–6.8</td>
<td>24.22</td>
</tr>
<tr>
<td>15</td>
<td>(1)</td>
<td>6.4–6.6</td>
<td>23.32</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Ehrenbaum（1904）は、Ammodites lanceolatus（L）のHeligolandにおける孵化期間は2—3週間であるというから、A. personatusも、ほぼこれと同じようである。しかし注意を要することは、親魚輸送、人工受精などの影響、さらに酸素補給が1日1回の換水で十分か、などの諸点である。

第93図は、孵化直後のイカナガ稚仔を万能投影機で50倍に拡大したものので、実測体長は3.81mmであった。これをA. tobianusの4〜5mmに比較すると、やや小型である。

Fig. 93. Pre-larval stage immediately after hatch.

第10節 比重と孵化率

前節において水温と孵化率について検討したが、海水比重の変化による孵化率の影響を検討しようと試みた。しかし現実的に、冬期の塩素量は第3章に述べた通り11〜2月は上昇期に当り、1959〜1964年では隆高層の平均値は17.12〜18.58%の範囲を示す。

調査方法

供試魚は、1958年1月7日三崎漁場で採捕したもので魚体は第1回の産卵を終えていた。したがって未実験は、残存卵を集めて行なったものである。受精は同日午後3時〜4時30分の間に実施し、受精卵はガラス板に付着させた。これを水温調節した水槽2個に各々比重を調整した1升ビーカー5個を用意し、受精卵の付着したガラス板2枚ずつを収容して観察した。ビーカーの海水は毎日1回換水し、ニナー・ポンプで絶えず空気を送った。

実験結果

実験期間中のA，B両水槽の水温は表56の通りで、両者とも水温の変化は大きく、特にA水槽では1月17日水温調節器の故障で、水温が32℃に達したので実験を中止した。
Table 56. Daily fluctuations of the maximum and minimum water temperatures in the water tanks.

<table>
<thead>
<tr>
<th>Date</th>
<th>W. T. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>1958 January</td>
<td>12.8</td>
</tr>
<tr>
<td>7(16 hr)</td>
<td>7.0~11.8</td>
</tr>
<tr>
<td>8(9♂)</td>
<td>7.5~15.5</td>
</tr>
<tr>
<td>9(9♂)</td>
<td>9.8~12.5</td>
</tr>
<tr>
<td>10(9♂)</td>
<td>7.0~13.5</td>
</tr>
<tr>
<td>11(9♂)</td>
<td>7.0~12.0</td>
</tr>
<tr>
<td>12(9♂)</td>
<td>9.0~11.0</td>
</tr>
<tr>
<td>13(9♂)</td>
<td>10.0~12.2</td>
</tr>
<tr>
<td>14(9♂)</td>
<td>10.0~12.8</td>
</tr>
<tr>
<td>15(9♂)</td>
<td>6.0~12.7</td>
</tr>
<tr>
<td>16(9♂)</td>
<td>7.0~32.0</td>
</tr>
<tr>
<td>17(9♂)</td>
<td>—</td>
</tr>
<tr>
<td>18(9♂)</td>
<td>—</td>
</tr>
<tr>
<td>19(9♂)</td>
<td>—</td>
</tr>
<tr>
<td>20(9♂)</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 57. Relation between the specific gravity and the egg development.
Remark: No, total number of eggs; D, number of developed eggs.

<table>
<thead>
<tr>
<th>No.</th>
<th>Sp.</th>
<th>1 (23.78~24.79)</th>
<th>2 (23.00)</th>
<th>3 (23.50)</th>
<th>4 (24.00)</th>
<th>5 (24.50)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>30 1 38</td>
<td>127 1 78 2</td>
<td>146 0 123 0</td>
<td>92 0 117 2</td>
<td>108 0 91 0</td>
</tr>
<tr>
<td>B</td>
<td>Egg</td>
<td>70 2 53 3 64 0 65 0</td>
<td>41 0 44 0 68 0 60 0</td>
<td>52 0 60 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 56. Daily fluctuations of the maximum and minimum water temperatures in the water tanks.

Table 57. Relation between the specific gravity and the egg development.

実験結果は、第57表に示すように受精卵がきわめて少ないことが目だつ。両種とも沿岸海水を使用したばあい（Sp 23.78~24.79）好結果が得られたが、資料が少ないのではっきりした結論は得られなかった。

第11節 水 温 比 重 の 変 化 と 卵 径

イカナゴ卵の孵化に関して、最適環境条件を採る目的で水温および比重と卵径の変化との関係を検討した。

研 究 方 法

イカナゴの産卵期は、12月下旬—1月上旬ごろで、地方により遅速がみられる。したがって、産卵期は、水温の低い時期に当り、両種では孵化と水温との関係について検討した。供試材料は、1個目の産卵を終えた親魚の生殖腺から残卵を人工採卵したもので、親魚は3月3日から同月29日まで室内に飼育し、必要に応じて採卵した。

1回の実験に使用した卵は、数尾の親魚から採卵したものを時計画内で混合し、親魚による卵径の個体差を少なくするようにし、ガラス板に付着させて誘水500㎖を入れた1ℓ容ビーカーに収容した。卵径の測定は、ガラス板のまま50倍の投影機で画像を測定した。

研 究 結 果

各種比重ならびに各種水温に収容した卵径の時間的変化は、第58表に示す通りである。
Table 58. Change of the diameter of eggs (cm × 50) according to the variation of specific gravity and water temperature.

<table>
<thead>
<tr>
<th>Date</th>
<th>Elapsed time(hr)</th>
<th>W. T. (°C)</th>
<th>Original eggs</th>
<th>Specific gravity (at 15°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Average egg diameter</td>
<td>Range of egg diameter</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>13.6—14.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>14.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>6.3—9.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>8.7—9.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>7.0—9.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar. 8</td>
<td>1</td>
<td>9.0—10.0</td>
<td>3.855(24)</td>
<td>3.805—3.905</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.892(25)</td>
<td>3.871(23)</td>
<td>3.892(25)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3.865(22)</td>
<td>3.874(23)</td>
<td>3.958(22)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>3.873(24)</td>
<td>3.906(21)</td>
<td>4.148(24)</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>3.830(23)</td>
<td>3.887(23)</td>
<td>4.024(24)</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>3.827(25)</td>
<td>3.911(24)</td>
<td>4.040(23)</td>
</tr>
<tr>
<td>Mar. 10</td>
<td>1</td>
<td>19.4—21.0</td>
<td>4.010(35)</td>
<td>3.960—4.060</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3.939(26)</td>
<td>3.957(27)</td>
<td>3.852(27)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>3.933(27)</td>
<td>3.922(22)</td>
<td>3.882(23)</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>3.933(27)</td>
<td>3.911(31)</td>
<td>3.049(23)</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>4.117(25)</td>
<td>3.956(47)</td>
<td>4.096(48)</td>
</tr>
<tr>
<td>Mar. 13</td>
<td>1</td>
<td>21.0</td>
<td>4.065(49)</td>
<td>4.015—4.115</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.933(43)</td>
<td>3.945(26)</td>
<td>3.850(44)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3.978(43)</td>
<td>3.914(25)</td>
<td>3.863(45)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>4.005(25)</td>
<td>3.921(23)</td>
<td>3.908(52)</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>4.000(26)</td>
<td>3.956(25)</td>
<td>3.819(49)</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>4.118(46)</td>
<td>3.987(25)</td>
<td>4.004(53)</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>4.137(44)</td>
<td>4.019(25)</td>
<td>4.071(49)</td>
</tr>
<tr>
<td>Mar. 15</td>
<td>1</td>
<td>21.0</td>
<td>4.072(34)</td>
<td>3.922—4.122</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3—0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Numerals within parentheses represent the number of eggs investigated.
これによると、
(1) 第1, 2回の実験では、水温6.3－14.4°Cで海水比重を変化させたが、高千穂では卵巣が膨張する。
(2) 第3, 4回の実験では、水温19.4－22.0°Cで海水比重を変化させたが、全般的に卵巣はいし縮する。
(3) 第5, 6回の実験では、水温2.5－0.0°Cで海水比重を変化させたが、卵巣は全般的に膨張する。
(4) 第7, 8, 9回の実験では、海水比重を23.00－24.23で水温はほぼ産卵期の水温の試水に収容した。こののばあい、水温10.1－12.5°Cの第4組に収容した卵の卵巣変化が最も少なく、次に水温11.5－13.6°Cの第3組に収容した卵の変化が少ない。
これらの結果について、卵巣の膨張といい縮の現象から水温ならびに比重との関係をみると、高水温では卵はいし縮し、低水温では卵巣が膨張することを示し、イカノガ卵が水温の高低によって鉛卵になると考えあわせると興味深い。また比重についてみると、自然環境では、ほぼ24.00位であるから、(4)の実験から卵巣に変化を及ぼさない水温を探ると、10.1－12.5°Cとなるが、前後の実験に従うと幾分高めである。

第12節 食 性
第1項 食の種類
イカノガの食性に関する研究はすでに兵庫県水産試験場報告（1929, 1932）、佐賀県水産試験場報告（1948）、元田（1950）、大島（1950）、Ryland（1964）らの報告がある。また一般に稚魚の自然死亡について、食性の変化する時期が1つの危険であるといわれている。イカノガ成魚の内臓は第94図のようであるが、稚魚の胃および腸の発達状態を観察すると
(1) 胃は、体長1cm以下のは魚体でも顕著ではあるが肉眼でみられる。
(2) 腸は、第59表に示すように体長3.0cmで曲り始め、体長4.5cm以上ではほぼ成体に近くなる。

Fig. 94. Diagramatic representation of the visceral organs.

Table 59. Body length distribution at the stage of intestine bending.
Remark: A, slightly; B, clearly; C, bended as same as adult.

| Landing place and date | Degree of bending | Body length (cm) | >2.4 | 2.1 | 2.6 | 2.8 | 3.0 | 3.2 | 3.4 | 3.6 | 3.8 | 4.0 | 4.2 | 4.4 | 4.6 | 4.8 | 5.0 |
|------------------------|-------------------|------------------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Manabeshima '63 Mar. 15 | Much | 12 | 14 | 17 | 22 | 9 | 7 | 5 | 5 | 2 | 4 | 3 | | | | |
| | More | 1 | 2 | 3 | 1 | 1 | | | | | | | | | | |
| | Most | | | | | | | | | | | | | | | |
| Uji-shima '63 Mar. 28 | Much | 28 | 16 | 13 | 13 | 12 | 8 | 7 | 2 | 1 | | | | | | |
| | More | | | | | | | | | | | | | | | | |
| | Most | | | | | | | | | | | | | | | | |
| Tachibana '63 Apr. 5 | Much | 3 | 14 | 31 | 17 | 13 | 6 | 7 | 3 | 3 | 1 | 1 | | | | |
| | More | | | | | | | | | | | | | | | | |
| | Most | | | | | | | | | | | | | | | | |
| Uji-shima '63 Mar. 48 | Much | 3 | 12 | 19 | 19 | 11 | 8 | 8 | 4 | 3 | | | | | | |
| | More | | | | | | | | | | | | | | | | |
| | Most | | | | | | | | | | | | | | | | |
| Muroshima '63 Mar. 11 | Much | 3 | 1 | 2 | 1 | 6 | 2 | 4 | 5 | 3 | | | | | | |
| | More | | | | | | | | | | | | | | | | |
| | Most | | | | | | | | | | | | | | | | |
(3) 尾鰭は、*A. tobianus*では、体長1.2cmでくぼみを生ずるというが、*A. personatus*でも体長1.1cm以上で正常鰭となり、同時に周縁膜鰭が消失し脊鰭と鰭鰭とが出現する（第60表）。

Table 60. Body length distribution at the time of appearance of epicercal or isocercal caudal fin.

<table>
<thead>
<tr>
<th>Caudal fin</th>
<th>0.3~</th>
<th>0.4~</th>
<th>0.5~</th>
<th>0.6~</th>
<th>0.7~</th>
<th>0.8~</th>
<th>0.9~</th>
<th>1.0~</th>
<th>1.1~</th>
<th>1.2~</th>
<th>1.3~</th>
<th>1.4~</th>
<th>1.5~</th>
<th>1.6~</th>
<th>1.7~</th>
<th>1.8~</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epiceral</td>
<td>14</td>
<td>31</td>
<td>13</td>
<td>12</td>
<td>16</td>
<td>14</td>
<td>8</td>
<td>11</td>
<td>13</td>
<td>3</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Isoceral</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2</td>
<td>8</td>
<td>12</td>
<td>12</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

(4) 卵黄は第61表に示す通り、全長4.0—4.5mmで吸収され、浜田（1966）と一致する。なお、全長は、ホルマリン資料のため多少い縮した。

Table 61. Body length distributions by yolk conditions. Unit of length, mm.

<table>
<thead>
<tr>
<th>Date</th>
<th>B. L.</th>
<th>Condition of yolk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961 Jan.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existing</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Absorbed</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1962 Feb.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existing</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Absorbed</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1962 Jan.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existing</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Absorbed</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1962 Feb.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existing</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Absorbed</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Table 62. Results of the

<table>
<thead>
<tr>
<th>Fishing ground</th>
<th>Date</th>
<th>No. of fish observed</th>
<th>Empty stomach</th>
<th>% of fish with empty stomach</th>
<th>Coianus</th>
<th>Paracalanus</th>
<th>Sagitta</th>
<th>Decapoda zoea (Macroura)</th>
<th>Decapoda zoea (Brachyura)</th>
<th>Bivalvia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yoshiwa</td>
<td>1949 Mar. 8</td>
<td>19</td>
<td>14</td>
<td>73.68</td>
<td>3.00</td>
<td>46.00</td>
<td>70.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apr. 14</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0.20</td>
<td>241.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120.67</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>50 Apr. 5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>2.40</td>
<td>53.60</td>
<td></td>
<td></td>
<td>1.20</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>8.60</td>
<td>184.20</td>
<td>62.00</td>
<td>1.80</td>
<td>0.20</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>4.40</td>
<td>77.20</td>
<td>10.40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>234.60</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>May 4</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>7.40</td>
<td>160.80</td>
<td>85.40</td>
<td>0.80</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16.20</td>
<td>51.60</td>
</tr>
<tr>
<td></td>
<td>51 Feb. 27</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mar. 9</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0.50</td>
<td>32.60</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>Apr. ?</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>1.57</td>
<td>325.47</td>
<td>0.05</td>
<td>0.19</td>
<td>0.09</td>
<td>7.24</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>1.18</td>
<td>111.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0.20</td>
<td>59.80</td>
<td></td>
<td></td>
<td>0.20</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0.10</td>
<td>22.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>May 8</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1.20</td>
<td>14.90</td>
<td>2.90</td>
<td></td>
<td></td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>4.40</td>
<td>95.60</td>
<td>18.20</td>
<td>1.80</td>
<td>5.60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>June 14</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>5.90</td>
<td>13.50</td>
<td>27.20</td>
<td>28.00</td>
<td>5.30</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>52 Mar. 30</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>2.90</td>
<td>311.40</td>
<td></td>
<td></td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>Apr. 17</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>112.70</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0.27</td>
<td>30.55</td>
<td></td>
<td></td>
<td>0.36</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0.10</td>
<td>203.10</td>
<td>0.30</td>
<td>0.60</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>53 Mar. 12</td>
<td>52</td>
<td>4</td>
<td>7.69</td>
<td>0.17</td>
<td>55.75</td>
<td></td>
<td></td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Apr. 2</td>
<td>62</td>
<td>2</td>
<td>3.23</td>
<td>0.02</td>
<td>68.97</td>
<td></td>
<td></td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>0.13</td>
<td>209.05</td>
<td></td>
<td>0.03</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>May 8</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>1.15</td>
<td>128.92</td>
<td>15.13</td>
<td>1.87</td>
<td>0.30</td>
<td>0.03</td>
</tr>
<tr>
<td>Saizaki</td>
<td>50 Dec. 12</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0.60</td>
<td>7.80</td>
<td>0.50</td>
<td></td>
<td></td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0.63</td>
<td>10.20</td>
<td>0.90</td>
<td>0.20</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0.30</td>
<td>145.00</td>
<td>1.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>51 Jan. 10</td>
<td>10</td>
<td>1</td>
<td>10.00</td>
<td>1.56</td>
<td>61.78</td>
<td>1.44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nov. 19</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1.90</td>
<td>56.40</td>
<td>0.30</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dec. 2</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>1.09</td>
<td>20.18</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>2.40</td>
<td>106.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>9.20</td>
<td>235.80</td>
<td>1.20</td>
<td>0.80</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>8.30</td>
<td>664.80</td>
<td>0.40</td>
<td>0.70</td>
<td>0.10</td>
<td>2.20</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0.30</td>
<td>63.00</td>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>52 Jan. 2</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>1.00</td>
<td>14.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84.09</td>
<td>0.27</td>
</tr>
</tbody>
</table>
Observations of stomach contents.

<table>
<thead>
<tr>
<th>Amphipoda</th>
<th>Isopoda</th>
<th>Egg of copepoda</th>
<th>Fish larva</th>
<th>Fish egg of Paracalanus</th>
<th>Sagitta</th>
<th>Decapoda zoa (Macrura)</th>
<th>Decapoda zoa (Brachyura)</th>
<th>Fish egg</th>
<th>Fish larva</th>
<th>Age of specimen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>153</td>
<td>153</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>338</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>316</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>370</td>
<td>164</td>
<td></td>
<td>6</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>159</td>
<td>27</td>
<td>1</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>365</td>
<td>3</td>
<td>1</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.20</td>
<td></td>
<td>325</td>
<td>262</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.80 0.20</td>
<td></td>
<td>115</td>
<td>258</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>1</td>
<td>1</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>549</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>389</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>184</td>
<td></td>
<td>1</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.20</td>
<td></td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.60</td>
<td></td>
<td>41</td>
<td>26</td>
<td>4</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>326</td>
<td>36</td>
<td>11</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.10 0.10</td>
<td></td>
<td>29</td>
<td>68</td>
<td>14</td>
<td>62</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.10</td>
<td></td>
<td>743</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>476</td>
<td>1</td>
<td>1</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>157</td>
<td></td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.20</td>
<td></td>
<td>562</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.00</td>
<td></td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
<td>249</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>331</td>
<td></td>
<td>1</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td>499</td>
<td></td>
<td>1</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.42 0.03 0.22</td>
<td></td>
<td>381</td>
<td>86</td>
<td>3</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27</td>
<td>2</td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>157</td>
<td>5</td>
<td>2</td>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>214</td>
<td>8</td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>79</td>
<td>2</td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>108</td>
<td>3</td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>2</td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>197</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.10</td>
<td></td>
<td>358</td>
<td>7</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.10</td>
<td></td>
<td>1,464</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.10</td>
<td></td>
<td>143</td>
<td>2</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.10</td>
<td></td>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.18</td>
<td></td>
<td>241</td>
<td>1</td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Fishing ground</td>
<td>Date</td>
<td>No. of fish observed</td>
<td>Empty stomach</td>
<td>% of fish with empty stomach</td>
<td>Calanus</td>
<td>Paracalanus</td>
<td>Sagitta</td>
<td>Decapoda zoea (Macrura)</td>
<td>Decapoda zoea (Brachyura)</td>
<td>Bivalvia</td>
</tr>
<tr>
<td>----------------</td>
<td>------------</td>
<td>----------------------</td>
<td>---------------</td>
<td>------------------------------</td>
<td>---------</td>
<td>-------------</td>
<td>---------</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Saizaki</td>
<td>'54 Feb. 19</td>
<td>29</td>
<td>20</td>
<td>68.97</td>
<td>0.78</td>
<td>1.00</td>
<td>1.44</td>
<td>2.17</td>
<td>0.33</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Mar. 15</td>
<td>62</td>
<td>36</td>
<td>58.07</td>
<td>0.50</td>
<td>1.75</td>
<td>2.17</td>
<td>0.33</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Apr. 22</td>
<td>11</td>
<td>2</td>
<td>18.18</td>
<td>3.06</td>
<td>0.00</td>
<td>0.70</td>
<td>0.30</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Mar. 29</td>
<td>16</td>
<td>1</td>
<td>6.25</td>
<td>2.00</td>
<td>2.00</td>
<td>1.40</td>
<td>0.47</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Apr. 15</td>
<td>24</td>
<td>0</td>
<td>0.22</td>
<td>3.08</td>
<td>3.08</td>
<td>2.45</td>
<td>1.58</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>May 23</td>
<td>72</td>
<td>8</td>
<td>11.11</td>
<td>1.32</td>
<td>0.22</td>
<td>0.23</td>
<td>0.02</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Mar. 30</td>
<td>52</td>
<td>5</td>
<td>9.62</td>
<td>1.91</td>
<td>0.86</td>
<td>1.50</td>
<td>0.74</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Apr. 20</td>
<td>61</td>
<td>3</td>
<td>4.92</td>
<td>1.71</td>
<td>0.41</td>
<td>0.76</td>
<td>0.79</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>June 27</td>
<td>38</td>
<td>6</td>
<td>15.79</td>
<td>0.41</td>
<td>0.86</td>
<td>0.47</td>
<td>1.59</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Dec. 20</td>
<td>30</td>
<td>1</td>
<td>3.33</td>
<td>0.86</td>
<td>0.33</td>
<td>0.22</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Mar. 23</td>
<td>17</td>
<td>6</td>
<td>16.22</td>
<td>2.45</td>
<td>0.77</td>
<td>0.10</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>May 17</td>
<td>67</td>
<td>11</td>
<td>16.42</td>
<td>0.77</td>
<td>1.22</td>
<td>0.66</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>'55 Feb. 1</td>
<td>29</td>
<td>6</td>
<td>6.06</td>
<td>1.62</td>
<td>0.33</td>
<td>0.07</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Tachibana</td>
<td>'53 Apr. 25</td>
<td>55</td>
<td>0</td>
<td>0.09</td>
<td>3.08</td>
<td>0.22</td>
<td>0.02</td>
<td>0.02</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>'54 Mar. 3</td>
<td>87</td>
<td>13</td>
<td>14.94</td>
<td>2.93</td>
<td>0.19</td>
<td>0.19</td>
<td>0.23</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>62</td>
<td>5</td>
<td>6.25</td>
<td>0.93</td>
<td>33.65</td>
<td>1.54</td>
<td>0.11</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>157</td>
<td>101</td>
<td>64.33</td>
<td>0.23</td>
<td>30.17</td>
<td>0.02</td>
<td>0.01</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>'54 Apr. 1</td>
<td>57</td>
<td>6</td>
<td>10.53</td>
<td>0.77</td>
<td>0.46</td>
<td>0.04</td>
<td>0.08</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>127</td>
<td>21</td>
<td>16.54</td>
<td>0.18</td>
<td>4.28</td>
<td>0.03</td>
<td>0.04</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125</td>
<td>27</td>
<td>21.60</td>
<td>0.08</td>
<td>27.03</td>
<td>0.04</td>
<td>0.07</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>'55 May 7</td>
<td>172</td>
<td>34</td>
<td>37.78</td>
<td>0.66</td>
<td>28.16</td>
<td>1.14</td>
<td>0.11</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>'55 Mar. 5</td>
<td>96</td>
<td>16</td>
<td>16.67</td>
<td>2.63</td>
<td>9.63</td>
<td>0.03</td>
<td>0.08</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>111</td>
<td>20</td>
<td>18.02</td>
<td>0.68</td>
<td>2.79</td>
<td>0.07</td>
<td>0.01</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Nakaze</td>
<td>'52 Apr. 11</td>
<td>11</td>
<td>0</td>
<td>0.09</td>
<td>4.55</td>
<td>31.67</td>
<td>15.40</td>
<td>0.31</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>'54 Apr. 27</td>
<td>168</td>
<td>0</td>
<td>1.05</td>
<td>180.44</td>
<td>1.05</td>
<td>1.15</td>
<td>0.25</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>'54 May 3</td>
<td>166</td>
<td>58</td>
<td>31.18</td>
<td>0.73</td>
<td>131.72</td>
<td>2.53</td>
<td>0.31</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>'54 May 14</td>
<td>18</td>
<td>7</td>
<td>7.69</td>
<td>1.51</td>
<td>317.67</td>
<td>15.27</td>
<td>0.33</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>'54 June 8</td>
<td>21</td>
<td>2</td>
<td>1.87</td>
<td>1.35</td>
<td>168.48</td>
<td>23.32</td>
<td>1.38</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>'54 June 25</td>
<td>25</td>
<td>2</td>
<td>2.89</td>
<td>290.68</td>
<td>14.78</td>
<td>10.00</td>
<td>1.69</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>'55 June 16</td>
<td>25</td>
<td>2</td>
<td>2.73</td>
<td>2.92</td>
<td>81.36</td>
<td>12.22</td>
<td>1.27</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>97</td>
<td>14</td>
<td>14.43</td>
<td>1.84</td>
<td>138.78</td>
<td>8.46</td>
<td>0.68</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Uji</td>
<td>'63 Mar. 28</td>
<td>100</td>
<td>67</td>
<td>67.00</td>
<td>0.15</td>
<td>0.06</td>
<td>0.06</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Amphi-poda</td>
<td>Isopoda</td>
<td>Egg of copepods</td>
<td>Fish larvae</td>
<td>Fish eggs</td>
<td>Paracalanus</td>
<td>Sagitta</td>
<td>Decapoda zoea (Macrura)</td>
<td>Decapoda zoea (Brachyura)</td>
<td>Fish eggs</td>
<td>Fish larvae</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----------</td>
<td>-------------</td>
<td>---------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>0.02</td>
<td>1.32</td>
<td>0.06</td>
<td>1,217</td>
<td>119</td>
<td>773</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0.07</td>
<td>0.03</td>
<td>183</td>
<td>6</td>
<td>1</td>
<td>214</td>
<td>12</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>0.05</td>
<td>194</td>
<td>153</td>
<td>3</td>
<td>1</td>
<td>404</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>0.05</td>
<td>0.06</td>
<td>338</td>
<td>6</td>
<td>1</td>
<td>143</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.11</td>
<td>0.16</td>
<td>203</td>
<td>1</td>
<td>1</td>
<td>288</td>
<td>124</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0.13</td>
<td>0.09</td>
<td>62</td>
<td>200</td>
<td>1</td>
<td>177</td>
<td>17</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0.11</td>
<td>0.1</td>
<td>208</td>
<td>3</td>
<td>1</td>
<td>870</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.01</td>
<td>0.01</td>
<td>385</td>
<td>47</td>
<td>4</td>
<td>878</td>
<td>82</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.01</td>
<td>0.13</td>
<td>567</td>
<td>182</td>
<td>5</td>
<td>670</td>
<td>146</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.02</td>
<td>0.02</td>
<td>251</td>
<td>106</td>
<td>2</td>
<td>293</td>
<td>154</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0.02</td>
<td>0.22</td>
<td>535</td>
<td>53</td>
<td>5</td>
<td>355</td>
<td>53</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.02</td>
<td>0.22</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

TOTAL

- 127 -
調査結果

(1) 飼料生物の種類と季節的変動

兵庫県水産試験場報告（1929）によると、明石沖では春期イカナゴがCalanus sp. の外に植物性 Plankton の Coscinodiscus, Eucampia, Thalassiothrix, Chaetocerosなどを飼料とし、また同誌（1932）によれば鹿の瀬漁場調査では、甲殻類が主要飼料であった。佐賀県水産試験場報告（1948）では、Euphausia, Copepoda, カタクチイワシのシラスがイカナゴ成魚の餌であると述べ、大島（1950）は、伊勢湾イカナゴの飼料生物として Copepoda, Balanus, Mysis, Plocamagon larva, Polycheata larva, Oikopleura, Sagitta, Coscinodiscus などをあげている。また元田（1950）は、北海道沿岸のイカナゴ幼魚の飼料として動植物性 Plankton では、Calanus plumchrus, C. helgolandicus, Paracalanus parvus, Metridia lucens, Euphausia sp., Decapoda zooa, Limacina helicina, Oikopleura labilioriensi: 植物性 Plankton では、Coscinodiscus を示し、飼料種類の重要性は年によって変わり、また魚体の大小によって差異があると述べ、不漁の原因が海中に おける飼料生物の不足と関連性のないのではないかと想像した。さらに Ryland, J.S. (1964) によれば、North Seaにおける Ammodites marinus（Raitt）の幼生の飼料は、Copepoda nauplii と appendicularians であるという。後藤（1956）（三原水道で採捕したイカナゴの飼料調査結果は第62表に示すように、主要飼料は Copepoda, Sagitta sp., Decapoda zooa, Caprella sp., Isopoda, Oikopleura sp., Bivalvia larva, fish egg, fish larva で、植物性 Plankton はみられなかった。Copepoda は、三原水道のイカナゴでも他の漁場調査結果に同様に、捕食個体数では最も多くみられる。第62表から1934年の調査のうち Paracalanus sp. の個体数を、漁場別に採捕機にしたがって図示すると第95図のようになる。

これによると Paracalanus sp. の捕食数は、漁場、漁期によっても差異がみられる。すなわち、季節、中間の漁場で捕獲されたイカナゴは、立花漁場で捕獲されたイカナゴよりも、非常に多くの Paracalanus sp. を捕食するし、また2～6月の漁期のうち4～5月の食捕数が大きい。しかしこがら、このことは第94図上段の空胃率と1層の平均捕食数を比較すると、空胃率の大きいときの捕食数は小さいことから、(1)捕食数が小さいのは、間を採っていない状態の魚をしらべたこと、あるいは元田ら（1950）が指摘したように(2)魚体の成長に伴う飼料の變化によるものと、さらにまた(3) Paracalanus sp. の季節変動に基づく捕食の

--- 128 ---
Fig. 95. Seasonal changes of the ratio of empty stomach (top), and of the average number of Paracalanus sp. preyed upon by a specimen (bottom), both observed in 1954. Solid circles, Saizaki; crosses, Nakaze; soft circles, Tachibana.

難易によるものとの3つの要因が混合して内在することも推測される。
1955年から1956年1月まで、毎月1つずつ観察を行なった資料から、1956年1〜7月のcopepod および nauplius について、海水1,000ℓの旬別平均体積数を示すと第98図のようである。これによって nauplius は、2月から増加しはじめ4月中旬に極大に達するが、一方 copepod は、1月以降から減少しはじめ5月下旬に極小を示した。このことは、イカナゴ1尾当たりの Paracalanus 捕食数は、4、5月に大きく6、6月に小さいが、nauplius と Paracalanus との季節変動の関係を考慮すると、copepod の減少はイカナゴの捕食に基因するものが大きいと思われる。

Sagitta sp. は Paracalanus sp. について重要な食料である。しかし Sagitta sp. の餌は主として nauplius, Paracalanus で、イカナゴ Sagitta sp. を捕食できる大きさに達するまでは食物関係にある。第62表からイカナゴ1尾当たりの Sagitta sp. 平均捕食数を、1954年の資料に基づいて漁場別に採集日にしたがって図示すると、第97図のようになる。

これによってよりも、イカナゴ Sagitta sp. を餌として捕食する時期は、幸崎の4月15日の資料を除くと、5月になってからであるといえる。元田ら（1950）その他も指摘したように魚体が大きくなれば、消化管内容が増加して食餌量が増加し、また口が大きくなり捕食活動も活発になるから大型餌料をとるようになるのは当然であろう。また Sagitta sp. の捕食量は Paracalanus sp. の2倍と同様に、漁場によって差異がみられる。

--- 129 ---
Fig. 96. Changes of the respective occurrence of nauplius and copepoda per 1,000 liters of sea water, observed at the coast of Onomichi Branch Station of Naikai Regional Fisheries Research Laboratory, every ten days from January to July, 1956.

イカナゴの肥満度は漁場によって異なるが、これは生息環境での餌生物の量と質とに依存するものと考えられる。第97図の上段に、漁場別の肥満度を採捕順に示した。これによると肥満度は、立花、中瀬、幸崎の順で、立花の肥満度が最も大きい。イカナゴが Paracalanus sp. を捕食する量は、幸崎、中瀬、立花の順で、幸崎のイカナゴが最も多量を捕食するにかかわらず、肥満度は反対の結果を示している。このことは、立花漁場の餌が3漁場のうち最も魚粉の高い組成をもつためと推定される。第92表に最大捕食数として各群ごとに Paracalanus sp., Sagitta sp., Decapoda zoea, Fish egg, Fish larva の最大捕食数を示すが、これによると、Paracalanus sp. は1,217匹、Sagitta sp. は26匹、Decapoda zoea は62匹、Fish egg は83個、Fish larva は26尾がイカナゴ1尾捕食数の最大値であった。このうち Fish egg の83個はイカナゴ卵であったが、これは1954年12月29日幸崎漁場で採捕した体長7.42cmのイカナゴによるものである。同日の
Fig. 97. Changes of the average fatness and the average number of Sagitta sp. preyed upon by a specimen from February to June in 1956. Solid circles, Saizaki; crosses, Nakaze; soft circles, Tachibana.

調査魚体93尾のうち5尾がイカサマ卵を捕食し合計108個のイカサマ卵を数えた。また Fish larva のうち、1, 2, 3月に捕食されているものは全部イカサマ稚魚で、産卵後の親魚が捕食することを示す。5, 6月に捕食されている稚魚はカタクチイワシが多く、各級年のイカサマが捕食する。1955年3月7日立花漁場で採捕したイカサマ稚魚91尾のうち、16尾がイカサマ稚魚40尾を捕食していた。1955年3月5日、7日実施した立花漁場のイカサマ摂食量調査から、イカサマ稚魚を親魚が捕食する方法を胃内の稚魚の位置によって判断すると、頭部から捕食されたもの36尾、尾部から捕食されたもの17尾で、稚魚の捕食は、偶然の出会いによって行なわれたものが多いようである。つぎにイカサマが稚魚を捕食した最大数は26尾で、1954年5月28日立花漁場で採捕した体長8.00cmのものであった。この日の測定結果では、体長6.53—10.03cmのイカサマ73尾のうち35尾が、106尾の他種稚魚を捕食していた。

イカサマの豊図について、産卵期に親魚数が多い年は不漁年といわれるが、ここに述べるように共食の結果不漁を招くことも考えられ、さらにイカサマとカタクチイワシとの間の並び合い、または共食の現象は両種間の豊図に逆になる一因とも考えられる。同様のことを Ryland J. S. (1964) は North Sea で認め、Ammodytes marinus (RAITI) の幼生が Plaice の幼生と appendicularian を奪い合うと述べた。

(2) 魚体の増大に伴う飼料の変化

元田ら (1950) は、イカサマ魚体の大小による Calanus plumchrus と Paracalanus parvus の捕食量の差を示し、Calanus plumchrus を捕食する量は体長の増大とともに増加し、体長6.5—6.5cmの魚は最も多く捕食しているが、6.5cm以上になるとかえって捕食量は減ってくる。これは魚が大きくなると、大型餌料を捕食するからであると述べている。このことは、さきに餌生物の季節的変動について述べたように魚体が増大するに伴って食性が変化することと一致する。第63表に1954年および1955年にわたった飼料調査の結果を体長別に示す。

第63表から、測定日ごとの魚体の大小による捕食数をみると、これらの間に大差は認められないが、元田らが指摘したように Paracalanus sp. の捕食数は、体長6—7cmのものが最も多く、体長5—6cm、7—8cmのものがこれにつづく。

また元田 (1950) らは、イカサマでは単一捕食の傾向がみられると報告したが、1, 2の場合以外では、この傾向は認められなかった。さらに参考資料として、1965年2月採捕のイカサマ稚魚の胃内容物を示すと、第64表のようになる。

これによって孵化直後のイカサマ稚魚は、copepoda の nauplii か、または Paracalanus sp. を捕食することがわかる。すなわち、魚体が小さい時期は飼料も小さく、魚体の増大に伴い飼料も大きくなる。
Table 63. Ratio of the planktonic animals in stomach contents preyed upon by the specimens classified in body length.

(1), Saizaki; (2), Nakaze; (3), Tachibana. Note: The specimens with empty stomach were removed.

<table>
<thead>
<tr>
<th>Date</th>
<th>Range of body length</th>
<th>No.</th>
<th>Paracalan us</th>
<th>Calanus</th>
<th>Sagitta</th>
<th>Decapoda zoea (Macura)</th>
<th>Decapoda zoea (Brachyura)</th>
<th>Amphipoda</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>1954 Feb. 9</td>
<td>7~8</td>
<td>3</td>
<td>100(63.6)</td>
<td>33.33(2)</td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8~9</td>
<td>5</td>
<td>100(40.2)</td>
<td>60.00(1.3)</td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9~10</td>
<td>1</td>
<td>100(11)</td>
<td>100(1.0)</td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb. 21</td>
<td>7~8</td>
<td>11</td>
<td>100(55.7)</td>
<td>35.36(1.5)</td>
<td>9.09(3.0)</td>
<td>9.09(1.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8~9</td>
<td>14</td>
<td>100(43.2)</td>
<td>21.43(1.3)</td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9~10</td>
<td>4</td>
<td>100(72.7)</td>
<td>50.00(1.5)</td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar. 15</td>
<td>8~9</td>
<td>7</td>
<td>100(235.5)</td>
<td>85.71(2.3)</td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9~10</td>
<td>5</td>
<td>100(101.0)</td>
<td>80.00(1.8)</td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar. 22</td>
<td>8~9</td>
<td>8</td>
<td>100(108.7)</td>
<td>37.50(2.0)</td>
<td>37.50(2.0)</td>
<td>50.00(6.0)</td>
<td>50.00(1.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9~10</td>
<td>2</td>
<td>100(382.5)</td>
<td>50.00(3.0)</td>
<td>50.00(6.0)</td>
<td>50.00(1.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar. 29</td>
<td>4~5</td>
<td>24</td>
<td>100(191.6)</td>
<td>87.50(3.0)</td>
<td>87.50(3.0)</td>
<td>20.00(1.6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5~6</td>
<td>34</td>
<td>100(268.4)</td>
<td>82.35(4.9)</td>
<td>5.88(3.0)</td>
<td>17.65(1.6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6~7</td>
<td>25</td>
<td>100(335.4)</td>
<td>84.00(4.5)</td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr. 5</td>
<td>7~8</td>
<td>1</td>
<td>100(388.0)</td>
<td>100(3.0)</td>
<td>100(2.0)</td>
<td>100(3.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8~9</td>
<td>12</td>
<td>100(236.1)</td>
<td>83.33(2.5)</td>
<td>25.00(6.3)</td>
<td>8.33(3.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9~10</td>
<td>2</td>
<td>100(102.0)</td>
<td>100(1.0)</td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr. 15</td>
<td>8~9</td>
<td>17</td>
<td>100(93.6)</td>
<td>82.35(3.8)</td>
<td>82.35(5.4)</td>
<td>70.59(2.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9~10</td>
<td>5</td>
<td>100(435.8)</td>
<td>100(3.5)</td>
<td>80.00(13.0)</td>
<td>60.00(3.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10~11</td>
<td>1</td>
<td>100(140.0)</td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr. 23</td>
<td>5~6</td>
<td>22</td>
<td>100(151.4)</td>
<td>9.09(1.0)</td>
<td>22.73(1.8)</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6~7</td>
<td>38</td>
<td>100(52.7)</td>
<td>28.95(1.1)</td>
<td>7.89(1.3)</td>
<td>2.63(1.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7~8</td>
<td>4</td>
<td>100(35.7)</td>
<td>%</td>
<td>25.00(1.0)</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr. 30</td>
<td>5~6</td>
<td>8</td>
<td>100(357.3)</td>
<td>50.00(1.8)</td>
<td>62.50(4.4)</td>
<td>25.00(1.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6~7</td>
<td>34</td>
<td>100(313.5)</td>
<td>67.65(2.2)</td>
<td>55.88(4.1)</td>
<td>35.29(1.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7~8</td>
<td>5</td>
<td>100(470.2)</td>
<td>80.00(2.0)</td>
<td>80.00(4.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May 7</td>
<td>5~6</td>
<td>11</td>
<td>100(287.7)</td>
<td>45.45(1.4)</td>
<td>63.63(10.0)</td>
<td>27.27(2.0)</td>
<td>54.54(1.7)</td>
<td>18.18(2.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6~7</td>
<td>27</td>
<td>100(323.1)</td>
<td>88.88(2.7)</td>
<td>77.77(4.0)</td>
<td>51.85(2.1)</td>
<td>37.03(1.9)</td>
<td>7.41(2.0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7~8</td>
<td>4</td>
<td>100(332.7)</td>
<td>75.00(2.6)</td>
<td>100(8.7)</td>
<td>75.00(3.0)</td>
<td>25.00(2.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Month</td>
<td>Day</td>
<td>Value1</td>
<td>Value2</td>
<td>Value3</td>
<td>Value4</td>
<td>Value5</td>
<td>Value6</td>
<td>Value7</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>1954 May 13</td>
<td>4~ 5</td>
<td>4</td>
<td>100(454.2)</td>
<td>100</td>
<td>3.5</td>
<td>50.00(21.0)</td>
<td>100</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5~ 6</td>
<td>32</td>
<td>100(381.1)</td>
<td>56.25</td>
<td>2.2</td>
<td>43.75(7.0)</td>
<td>15.63</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6~ 7</td>
<td>44</td>
<td>100(378.4)</td>
<td>63.64</td>
<td>1.6</td>
<td>45.45(6.3)</td>
<td>11.36</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7~ 8</td>
<td>2</td>
<td>100(325.0)</td>
<td>100</td>
<td>4.0</td>
<td>50.00(11.0)</td>
<td>100</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>4.0</td>
<td></td>
<td>100</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>May 20</td>
<td>5~ 6</td>
<td>3</td>
<td>100(138.0)</td>
<td>33.33</td>
<td>1.0</td>
<td>66.67(2.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6~ 7</td>
<td>48</td>
<td>100(183.4)</td>
<td>64.58</td>
<td>2.3</td>
<td>52.08(7.0)</td>
<td>47.92</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7~ 8</td>
<td>7</td>
<td>100(678.7)</td>
<td>71.43</td>
<td>5.2</td>
<td>71.43(9.0)</td>
<td>57.14</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>May 27</td>
<td>6~ 7</td>
<td>6</td>
<td>100(76.1)</td>
<td>33.33(1.5)</td>
<td>23.08(4.0)</td>
<td>19.23(1.6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7~ 8</td>
<td>26</td>
<td>100(76.8)</td>
<td>26.92(1.8)</td>
<td>23.08(4.0)</td>
<td>19.23(1.6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>June 3</td>
<td>6~ 7</td>
<td>6</td>
<td>100(63.3)</td>
<td>50.00(2.0)</td>
<td>50.00(6.6)</td>
<td>66.67(1.7)</td>
<td>16.67(3.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7~ 8</td>
<td>7</td>
<td>100(55.1)</td>
<td>28.57(2.0)</td>
<td>42.85(21.0)</td>
<td>100</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9~ 9</td>
<td>13</td>
<td>100(92.4)</td>
<td>53.85(1.5)</td>
<td>69.23(4.4)</td>
<td>46.15(2.5)</td>
<td>38.46(2.2)</td>
<td>23.07(7.0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9~ 10</td>
<td>2</td>
<td>100(62.5)</td>
<td>50.00(3.0)</td>
<td>100</td>
<td>14.5</td>
<td>100</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>Dec. 4</td>
<td>6~ 7</td>
<td>4</td>
<td>75.00(118.0)</td>
<td>50.00(2.0)</td>
<td>25.00(16.9)</td>
<td>25.00(1.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7~ 8</td>
<td>18</td>
<td>100(166.3)</td>
<td>66.67(5.4)</td>
<td>77.78(16.9)</td>
<td>27.78(1.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8~ 9</td>
<td>8</td>
<td>100(156.3)</td>
<td>62.50(1.6)</td>
<td>62.50(3.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec. 17</td>
<td>6~ 7</td>
<td>2</td>
<td>100(55.5)</td>
<td>100(8.0)</td>
<td>50.00(2.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7~ 8</td>
<td>18</td>
<td>100(27.1)</td>
<td>66.67(4.3)</td>
<td>38.89(2.0)</td>
<td>16.67(1.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8~ 9</td>
<td>10</td>
<td>100(14.7)</td>
<td>30.00(1.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9~ 10</td>
<td>1</td>
<td>100(20.0)</td>
<td></td>
<td>100(2.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec. 21</td>
<td>6~ 7</td>
<td>26</td>
<td>100(145.1)</td>
<td>53.85(2.0)</td>
<td>3.85(1.0)</td>
<td>3.85(1.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7~ 8</td>
<td>22</td>
<td>100(116.7)</td>
<td>22.73(1.2)</td>
<td>18.18(2.0)</td>
<td>4.55(1.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8~ 9</td>
<td>8</td>
<td>100(67.9)</td>
<td>50.00(1.8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec. 29</td>
<td>6~ 7</td>
<td>8</td>
<td>100(60.0)</td>
<td>59.00(1.8)</td>
<td>25.00(2.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7~ 8</td>
<td>44</td>
<td>100(58.3)</td>
<td>56.82(3.1)</td>
<td>43.18(2.6)</td>
<td>4.55(1.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8~ 9</td>
<td>29</td>
<td>100(42.5)</td>
<td>34.48(4.7)</td>
<td>31.03(3.1)</td>
<td>3.45(1.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9~ 10</td>
<td>10</td>
<td>100(36.4)</td>
<td>40.00(4.8)</td>
<td>30.00(4.3)</td>
<td>30.00(1.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'55 Feb. 1</td>
<td>7~ 8</td>
<td>39</td>
<td>100(250.0)</td>
<td>94.87(14.0)</td>
<td>89.74(17.6)</td>
<td>56.41(1.7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8~ 9</td>
<td>78</td>
<td>100(224.5)</td>
<td>97.44(18.2)</td>
<td>92.31(22.7)</td>
<td>57.69(1.6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9~ 10</td>
<td>25</td>
<td>100(197.6)</td>
<td>92.00(21.9)</td>
<td>100(37.6)</td>
<td>64.00(1.8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10~ 11</td>
<td>3</td>
<td>100(146.3)</td>
<td>100(12.0)</td>
<td>100(9.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Mollusca) 6.82(34.3) 3.45(1.0)
(Sand-larvae) 23.08(1.8) 5.13(1.0)
(Fish larvae) 47.44(3.0) 6.41(1.0)

40.00(6.6) 8.00(2.0) 8.00(1.0)
<table>
<thead>
<tr>
<th>Date</th>
<th>Range of body length (cm)</th>
<th>No.</th>
<th>Paracalanus</th>
<th>Calanus</th>
<th>Sagitta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1954</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr. 27</td>
<td>4~5</td>
<td>10</td>
<td>100(182.5)</td>
<td>70.0(2.0)</td>
<td>10.0(1.0)</td>
</tr>
<tr>
<td></td>
<td>5~6</td>
<td>77</td>
<td>100(16.89)</td>
<td>45.45(1.2)</td>
<td>12.99(1.0)</td>
</tr>
<tr>
<td></td>
<td>6~7</td>
<td>76</td>
<td>100(188.8)</td>
<td>44.74(2.8)</td>
<td>17.11(1.2)</td>
</tr>
<tr>
<td></td>
<td>7~8</td>
<td>5</td>
<td>100(221.6)</td>
<td>60.00(2.0)</td>
<td>20.00(1.0)</td>
</tr>
<tr>
<td>Apr. 28</td>
<td>3~4</td>
<td>2</td>
<td>100(8.05)</td>
<td>50.00(1.0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4~5</td>
<td>11</td>
<td>100(7.53)</td>
<td>27.27(1.6)</td>
<td>36.36(1.5)</td>
</tr>
<tr>
<td></td>
<td>5~6</td>
<td>35</td>
<td>100(5.48)</td>
<td>42.42(1.2)</td>
<td>18.18(2.2)</td>
</tr>
<tr>
<td></td>
<td>6~7</td>
<td>17</td>
<td>100(7.35)</td>
<td>29.41(1.2)</td>
<td>17.65(1.6)</td>
</tr>
<tr>
<td></td>
<td>7~8</td>
<td>3</td>
<td>100(96.3)</td>
<td>66.67(2.5)</td>
<td></td>
</tr>
<tr>
<td>May 3</td>
<td>4~5</td>
<td>2</td>
<td>100(229.0)</td>
<td>50.00(1.0)</td>
<td>37.74(7.2)</td>
</tr>
<tr>
<td></td>
<td>5~6</td>
<td>53</td>
<td>100(141.0)</td>
<td>56.60(2.0)</td>
<td>20.29(1.5)</td>
</tr>
<tr>
<td></td>
<td>6~7</td>
<td>69</td>
<td>100(110.4)</td>
<td>28.59(1.9)</td>
<td>53.62(8.8)</td>
</tr>
<tr>
<td></td>
<td>7~8</td>
<td>2</td>
<td>100(71.0)</td>
<td>50.00(1.0)</td>
<td>90.00(3.8)</td>
</tr>
<tr>
<td></td>
<td>8~9</td>
<td>9</td>
<td>100(41.5)</td>
<td>50.00(1.0)</td>
<td>90.00(3.8)</td>
</tr>
<tr>
<td>May 7</td>
<td>5~6</td>
<td>2</td>
<td>100(180.0)</td>
<td>50.00(1.0)</td>
<td>50.00(1.0)</td>
</tr>
<tr>
<td></td>
<td>6~7</td>
<td>39</td>
<td>100(110.2)</td>
<td>71.79(1.9)</td>
<td>87.18(28.3)</td>
</tr>
<tr>
<td></td>
<td>7~8</td>
<td>19</td>
<td>100(78.6)</td>
<td>57.89(1.3)</td>
<td>94.74(40.7)</td>
</tr>
<tr>
<td></td>
<td>8~9</td>
<td>2</td>
<td>100(54.5)</td>
<td>100(3.0)</td>
<td>100(29.5)</td>
</tr>
<tr>
<td></td>
<td>9~10</td>
<td>1</td>
<td>100(82.0)</td>
<td>100(2.0)</td>
<td>100(118.0)</td>
</tr>
<tr>
<td>May 14</td>
<td>5~6</td>
<td>15</td>
<td>100(350.7)</td>
<td>73.33(2.3)</td>
<td>66.67(36.6)</td>
</tr>
<tr>
<td></td>
<td>6~7</td>
<td>61</td>
<td>100(321.3)</td>
<td>75.41(2.0)</td>
<td>77.05(16.4)</td>
</tr>
<tr>
<td></td>
<td>8~9</td>
<td>4</td>
<td>100(221.5)</td>
<td>100(2.5)</td>
<td>100(11.7)</td>
</tr>
<tr>
<td></td>
<td>9~10</td>
<td>1</td>
<td>100(211.0)</td>
<td>100(3.0)</td>
<td>100(4.0)</td>
</tr>
<tr>
<td>May 18</td>
<td>5~6</td>
<td>11</td>
<td>100(161.1)</td>
<td>45.45(1.8)</td>
<td>90.91(5.9)</td>
</tr>
<tr>
<td></td>
<td>6~7</td>
<td>75</td>
<td>100(183.8)</td>
<td>70.67(1.8)</td>
<td>80.00(27.0)</td>
</tr>
<tr>
<td></td>
<td>7~8</td>
<td>12</td>
<td>100(97.1)</td>
<td>66.67(2.1)</td>
<td>91.67(41.1)</td>
</tr>
<tr>
<td></td>
<td>8~9</td>
<td>4</td>
<td>100(73.7)</td>
<td>100(3.5)</td>
<td>100(61.5)</td>
</tr>
<tr>
<td>May 25</td>
<td>5~6</td>
<td>7</td>
<td>100(350.5)</td>
<td>42.85(1.3)</td>
<td>100(3.2)</td>
</tr>
<tr>
<td></td>
<td>6~7</td>
<td>111</td>
<td>100(298.1)</td>
<td>83.78(3.3)</td>
<td>88.29(12.5)</td>
</tr>
<tr>
<td></td>
<td>7~8</td>
<td>13</td>
<td>100(232.2)</td>
<td>100(5.4)</td>
<td>100(44.9)</td>
</tr>
<tr>
<td></td>
<td>8~9</td>
<td>3</td>
<td>100(126.3)</td>
<td>100(4.3)</td>
<td>100(36.3)</td>
</tr>
<tr>
<td>June 8</td>
<td>6~7</td>
<td>20</td>
<td>100(33.6)</td>
<td>60.00(2.6)</td>
<td>90.00(28.2)</td>
</tr>
<tr>
<td></td>
<td>7~8</td>
<td>30</td>
<td>100(33.7)</td>
<td>85.67(3.6)</td>
<td>93.33(30.7)</td>
</tr>
<tr>
<td>June 16</td>
<td>6~7</td>
<td>14</td>
<td>100(99.7)</td>
<td>100(2.9)</td>
<td>64.29(9.8)</td>
</tr>
<tr>
<td></td>
<td>7~8</td>
<td>48</td>
<td>100(83.5)</td>
<td>70.63(4.7)</td>
<td>97.92(22.4)</td>
</tr>
<tr>
<td></td>
<td>8~9</td>
<td>4</td>
<td>100(31.5)</td>
<td>50.00(2.0)</td>
<td>100(7.5)</td>
</tr>
<tr>
<td>June 25</td>
<td>6~7</td>
<td>36</td>
<td>100(153.8)</td>
<td>80.56(2.6)</td>
<td>81.58(11.0)</td>
</tr>
<tr>
<td></td>
<td>7~8</td>
<td>46</td>
<td>100(130.0)</td>
<td>69.57(2.3)</td>
<td>84.78(5.2)</td>
</tr>
</tbody>
</table>

Decapoda (Macrura) | Decapoda (Brachyura) | Amphipoda | Fish larva|
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10.00(2.0)</td>
<td>30.00(3.3)</td>
<td>2.63(1.0)</td>
<td></td>
</tr>
<tr>
<td>7.79(1.5)</td>
<td>19.48(1.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.11(1,2)</td>
<td>10.53(1.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.00(1.0)</td>
<td>12.12(1.0)</td>
<td>2.45(1.0)</td>
<td></td>
</tr>
<tr>
<td>9.09(1.3)</td>
<td>29.41(1.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.45(1.0)</td>
<td>5.26(2.0)</td>
<td>× 15.79(1,0)</td>
<td></td>
</tr>
<tr>
<td>50.00(1.0)</td>
<td>50.00(1.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.27(1.3)</td>
<td>12.00(1.0)</td>
<td>× 2.67(1,0)</td>
<td></td>
</tr>
<tr>
<td>33.33(2.5)</td>
<td>8.33(1.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.00(2.0)</td>
<td>14.29(5.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.94(3.6)</td>
<td>3.60(1.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53.85(7.2)</td>
<td>15.00(3.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66.67(6.7)</td>
<td>16.00(3.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.08(2.6)</td>
<td>2.08(1.0)</td>
<td>× 68.75(3,9)</td>
<td></td>
</tr>
<tr>
<td>2.78(4.0)</td>
<td>4.35(1.0)</td>
<td>× 17.39(3,0)</td>
<td></td>
</tr>
</tbody>
</table>
Table 63, Continued.

<table>
<thead>
<tr>
<th>Date</th>
<th>Range of body length</th>
<th>No.</th>
<th>Paracalanus</th>
<th>Calanus</th>
<th>Sagitta</th>
<th>Decapoda zoea (Macrura)</th>
<th>Decapoda zoea (Brachyura)</th>
<th>Amphipoda</th>
<th>Fish larva</th>
<th>Mollusca</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>1954</td>
<td>Mar. 3</td>
<td>7~8</td>
<td>26</td>
<td>100 (95.2)</td>
<td>61.54(10.1)</td>
<td>11.54(9.6)</td>
<td>25.92(22.5)</td>
<td>3.85(3.2)</td>
<td>7.69(6.4)</td>
<td>7.69(6.4)</td>
<td>15.91(1.2)</td>
</tr>
<tr>
<td></td>
<td>8~9</td>
<td>44</td>
<td>100 (71.4)</td>
<td>43.18(3.1)</td>
<td>2.27(3.0)</td>
<td>6.82(1.0)</td>
<td>2.27(1.0)</td>
<td>6.82(1.0)</td>
<td>7.69(6.4)</td>
<td>12.50(1.0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9~10</td>
<td>4</td>
<td>100 (22.2)</td>
<td>62.50(3.2)</td>
<td>37.50(5.6)</td>
<td>25.00(1.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mar. 12</td>
<td>7~8</td>
<td>16</td>
<td>100 (95.6)</td>
<td>81.25(2.0)</td>
<td>25.00(1.25)</td>
<td>6.25(1.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8~9</td>
<td>51</td>
<td>100 (86.2)</td>
<td>66.67(3.0)</td>
<td>43.14 (4.2)</td>
<td>11.76 (1.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9~10</td>
<td>8</td>
<td>100 (43.1)</td>
<td>62.50(3.2)</td>
<td>37.50(5.6)</td>
<td>25.00(1.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mar. 18</td>
<td>3~4</td>
<td>1</td>
<td>100 (4.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4~5</td>
<td>5</td>
<td>100 (9.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5~6</td>
<td>28</td>
<td>100 (20.5)</td>
<td>7.14(1.5)</td>
<td>10.71(1.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6~7</td>
<td>8</td>
<td>100 (14.5)</td>
<td></td>
<td>25.00(1.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7~8</td>
<td>6</td>
<td>100 (323.0)</td>
<td>50.00(3.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8~9</td>
<td>6</td>
<td>100 (143.8)</td>
<td>66.67(2.5)</td>
<td>16.67(1.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9~10</td>
<td>2</td>
<td>100 (421.0)</td>
<td>100 (4.6)</td>
<td>50.00(2.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mar. 24</td>
<td>7~8</td>
<td>9</td>
<td>100 (65.2)</td>
<td>33.33(2.3)</td>
<td>11.11(2.0)</td>
<td>15.38(1.3)</td>
<td>50.00(1.0)</td>
<td></td>
<td>11.11(1.0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8~9</td>
<td>39</td>
<td>100 (51.8)</td>
<td>43.59(1.7)</td>
<td>15.38(1.3)</td>
<td>11.11(1.0)</td>
<td>15.38(1.0)</td>
<td>50.00(1.0)</td>
<td>2.56(1.0)</td>
<td>2.56(1.0)</td>
<td>5.13(1.5)</td>
</tr>
<tr>
<td></td>
<td>9~10</td>
<td>2</td>
<td>100 (75.5)</td>
<td>100 (1.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apr. 1</td>
<td>5~6</td>
<td>1</td>
<td>100 (29.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6~7</td>
<td>6</td>
<td>100 (84.2)</td>
<td>33.33(3.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7~8</td>
<td>6</td>
<td>100 (110.3)</td>
<td>50.00(1.3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8~9</td>
<td>12</td>
<td>100 (156.4)</td>
<td>46.43 (2.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14.29(2.3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9~10</td>
<td>3</td>
<td>100 (125.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apr. 7</td>
<td>3~4</td>
<td>2</td>
<td>100 (48.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4~5</td>
<td>27</td>
<td>100 (26.8)</td>
<td>14.81(1.7)</td>
<td>3.70(2.0)</td>
<td>11.11(1.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5~6</td>
<td>63</td>
<td>100 (38.1)</td>
<td>11.11 (1.5)</td>
<td>3.17(1.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6~7</td>
<td>12</td>
<td>100 (74.9)</td>
<td>8.33(1.0)</td>
<td>8.33(1.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7~8</td>
<td>3</td>
<td>100 (124.3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apr. 15</td>
<td>4~5</td>
<td>10</td>
<td>100 (11.9)</td>
<td>10.0(2.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5~6</td>
<td>43</td>
<td>100 (17.3)</td>
<td>4.65(1.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.33(1.0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6~7</td>
<td>27</td>
<td>100 (27.1)</td>
<td>3.70(1.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.70(1.0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7~8</td>
<td>2</td>
<td>100 (50.5)</td>
<td>50.00(1.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50.00(1.0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8~9</td>
<td>11</td>
<td>100 (71.4)</td>
<td>18.18(1.5)</td>
<td>9.09(3.0)</td>
<td>18.18(1.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9~10</td>
<td>4</td>
<td>100 (40.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25.00(1.0)</td>
</tr>
<tr>
<td></td>
<td>Apr. 19</td>
<td>3~4</td>
<td>1</td>
<td>100 (12.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4~5</td>
<td>5</td>
<td>100 (13.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40.00(1.0)</td>
</tr>
<tr>
<td></td>
<td>5~6</td>
<td>54</td>
<td>100 (30.9)</td>
<td>12.96(1.4)</td>
<td>7.41(1.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6~7</td>
<td>79</td>
<td>100 (62.2)</td>
<td>17.72(1.7)</td>
<td>12.66(1.4)</td>
<td>1.37(1.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7~8</td>
<td>10</td>
<td>100 (52.9)</td>
<td>40.00(1.5)</td>
<td>10.00(1.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8~9</td>
<td>1</td>
<td>100 (461.0)</td>
<td>100 (4.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Range of body length cm</td>
<td>No.</td>
<td>Paracalanus</td>
<td>Calanus</td>
<td>Sagitta</td>
<td>Decapoda zoea (Macrura)</td>
<td>Decapoda zoea (Brachyura)</td>
<td>Amphipoda</td>
<td>Fish larva</td>
<td>Mollusca</td>
<td>Others</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------</td>
<td>-----</td>
<td>-------------</td>
<td>---------</td>
<td>---------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>------------</td>
<td>------------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>1954 Apr. 21</td>
<td>4~ 5</td>
<td>4</td>
<td>100 (61.5)</td>
<td>25.00 (2.0)</td>
<td>25.00 (3.0)</td>
<td>8.75 (1.1)</td>
<td>1.25 (1.0)</td>
<td>7.80 (1.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5~ 6</td>
<td>80</td>
<td>100 (105.4)</td>
<td>41.25 (1.6)</td>
<td>7.80 (2.1)</td>
<td>21.43 (2.1)</td>
<td>7.14 (1.0)</td>
<td>5.35 (1.0)</td>
<td>50.00 (1.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6~ 7</td>
<td>56</td>
<td>100 (147.1)</td>
<td>46.43 (2.5)</td>
<td>14.23 (2.1)</td>
<td>7.14 (1.0)</td>
<td>5.35 (1.0)</td>
<td>50.00 (1.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7~ 8</td>
<td>2</td>
<td>100 (21.0)</td>
<td>14.23 (2.1)</td>
<td>7.14 (1.0)</td>
<td>5.35 (1.0)</td>
<td>50.00 (1.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr. 22</td>
<td>4~ 5</td>
<td>7</td>
<td>100 (24.8)</td>
<td>14.23 (1.0)</td>
<td>7.14 (1.0)</td>
<td>5.35 (1.0)</td>
<td>2.78 (1.0)</td>
<td>1.79 (1.0)</td>
<td>1.79 (1.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5~ 6</td>
<td>36</td>
<td>100 (81.1)</td>
<td>38.89 (1.7)</td>
<td>8.33 (1.0)</td>
<td>5.35 (1.0)</td>
<td>2.78 (1.0)</td>
<td>1.79 (1.0)</td>
<td>1.79 (1.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6~ 7</td>
<td>56</td>
<td>100 (113.4)</td>
<td>51.79 (2.2)</td>
<td>8.93 (1.0)</td>
<td>1.79 (1.0)</td>
<td>3.57 (1.0)</td>
<td>1.79 (1.0)</td>
<td>1.79 (1.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7~ 8</td>
<td>4</td>
<td>100 (132.0)</td>
<td>50.00 (2.5)</td>
<td>25.00 (1.0)</td>
<td>12.50 (2.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr. 27</td>
<td>6~ 7</td>
<td>42</td>
<td>100 (31.5)</td>
<td>33.33 (2.3)</td>
<td>35.71 (5.9)</td>
<td>4.76 (1.0)</td>
<td>9.52 (1.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7~ 8</td>
<td>8</td>
<td>100 (21.2)</td>
<td>25.00 (1.0)</td>
<td>50.00 (2.7)</td>
<td>12.50 (2.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8~ 9</td>
<td>3</td>
<td>100 (12.6)</td>
<td>33.33 (2.0)</td>
<td>12.50 (2.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9~ 10</td>
<td>1</td>
<td>100 (6.0)</td>
<td>12.50 (2.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May 7</td>
<td>5~ 6</td>
<td>1</td>
<td>100 (150.0)</td>
<td>100 (2.0)</td>
<td>2.56 (1.0)</td>
<td>5.13 (1.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6~ 7</td>
<td>39</td>
<td>100 (110.4)</td>
<td>76.92 (2.3)</td>
<td>82.05 (36.1)</td>
<td>53.85 (2.0)</td>
<td>66.67 (2.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7~ 8</td>
<td>17</td>
<td>100 (64.1)</td>
<td>70.59 (2.0)</td>
<td>82.35 (36.1)</td>
<td>4.18 (2.1)</td>
<td>11.76 (1.0)</td>
<td>11.76 (1.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8~ 9</td>
<td>7</td>
<td>100 (83.5)</td>
<td>85.71 (1.8)</td>
<td>100 (51.7)</td>
<td>71.43 (1.2)</td>
<td>14.29 (1.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9~ 10</td>
<td>1</td>
<td>100 (53.0)</td>
<td>100 (1.0)</td>
<td>100 (67.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May 26</td>
<td>6~ 7</td>
<td>6</td>
<td>100 (14.9)</td>
<td>100 (5.3)</td>
<td>100 (76.8)</td>
<td>83.33 (1.0)</td>
<td>66.67 (2.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7~ 8</td>
<td>53</td>
<td>100 (31.8)</td>
<td>90.57 (6.5)</td>
<td>100 (62.9)</td>
<td>71.70 (3.6)</td>
<td>37.74 (3.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8~ 9</td>
<td>9</td>
<td>100 (31.1)</td>
<td>77.78 (7.4)</td>
<td>100 (69.1)</td>
<td>77.78 (3.8)</td>
<td>77.78 (3.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9~ 10</td>
<td>3</td>
<td>100 (16.0)</td>
<td>66.67 (4.5)</td>
<td>100 (61.6)</td>
<td>100 (5.0)</td>
<td>33.33 (5.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>June 1</td>
<td>6~ 7</td>
<td>20</td>
<td>95.0 (52.0)</td>
<td>50.00 (4.2)</td>
<td>50.00 (4.2)</td>
<td>50.00 (4.2)</td>
<td>50.00 (4.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7~ 8</td>
<td>35</td>
<td>85.71 (10.38)</td>
<td>74.29 (4.6)</td>
<td>100 (29.3)</td>
<td>80.00 (2.8)</td>
<td>42.86 (1.4)</td>
<td>34.29 (1.2)</td>
<td>55.56 (3.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8~ 9</td>
<td>9</td>
<td>88.89 (6.1)</td>
<td>88.89 (3.7)</td>
<td>88.89 (3.7)</td>
<td>88.89 (3.7)</td>
<td>88.89 (3.7)</td>
<td>88.89 (3.7)</td>
<td>88.89 (3.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9~ 10</td>
<td>1</td>
<td>100 (1.3)</td>
<td>100 (2.0)</td>
<td>100 (4.0)</td>
<td>100 (3.0)</td>
<td>100 (8.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'55 Mar. 5</td>
<td>7~ 8</td>
<td>1</td>
<td>100 (3.0)</td>
<td>100 (9.0)</td>
<td>100 (1.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8~ 9</td>
<td>43</td>
<td>100 (17.6)</td>
<td>67.44 (4.0)</td>
<td>60.47 (8.1)</td>
<td>4.65 (1.0)</td>
<td>4.65 (1.0)</td>
<td>9.30 (1.3)</td>
<td>17.65 (1.3)</td>
<td>6.98 (1.3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9~ 10</td>
<td>34</td>
<td>100 (11.4)</td>
<td>76.47 (3.3)</td>
<td>58.82 (19.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10~ 11</td>
<td>2</td>
<td>100 (1.0)</td>
<td>50.00 (4.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar. 7</td>
<td>8~ 9</td>
<td>34</td>
<td>88.89 (10.2)</td>
<td>41.18 (1.7)</td>
<td>73.53 (7.7)</td>
<td>11.76 (1.3)</td>
<td>2.94 (1.0)</td>
<td>17.65 (1.7)</td>
<td>24.53</td>
<td>9.44 (1.2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9~ 10</td>
<td>53</td>
<td>89.26 (5.9)</td>
<td>28.30 (1.5)</td>
<td>79.25 (7.4)</td>
<td>3.77 (1.0)</td>
<td>15.09 (1.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10~ 11</td>
<td>4</td>
<td>75.00 (6.0)</td>
<td>100 (55.3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 64. Ratio of planktonic animals and the average number of stomach contents preayed upon by the sand-lance larvae captured by the plankton net in February, 1965.

<table>
<thead>
<tr>
<th>Date</th>
<th>Range of bodylength</th>
<th>Nauplius</th>
<th>Paracalanus</th>
<th>Calanus</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>1965 Feb. 13–16</td>
<td>3～4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4～5</td>
<td>39</td>
<td>20.51(1.0)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5～6</td>
<td>37</td>
<td>37.84(1.0)</td>
<td>8.11(1.0)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6～7</td>
<td>22</td>
<td>36.36(1.3)</td>
<td>13.64(1.0)</td>
<td>4.55(1.0)</td>
</tr>
<tr>
<td></td>
<td>7～8</td>
<td>13</td>
<td>53.85(1.0)</td>
<td>15.38(1.0)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8～9</td>
<td>23</td>
<td>34.78(1.8)</td>
<td>26.09(1.0)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>9～10</td>
<td>15</td>
<td>6.67(1.0)</td>
<td>26.67(1.0)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10～11</td>
<td>14</td>
<td>7.14(1.0)</td>
<td>57.14(1.0)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>11～12</td>
<td>13</td>
<td>15.38(1.0)</td>
<td>38.46(1.0)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>12～13</td>
<td>11</td>
<td>18.18(1.0)</td>
<td>18.18(1.0)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>13～14</td>
<td>7</td>
<td>14.25(1.0)</td>
<td>42.86(1.0)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>14～15</td>
<td>3</td>
<td>65.7(1.0)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>15～16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>16～17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>17～18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>18～19</td>
<td>1</td>
<td>0</td>
<td>100.00(1.0)</td>
<td>0</td>
</tr>
</tbody>
</table>

(Numerals within parentheses represent the average number of stomach content.)

第2項 搦餌量

漁獲後のイカナゴは飼料の不足から魚体は小型であり、また飼の質によって漁場ごとに成長が異なる。一方魚体の大きさ、年令によって摦餌量は異なるのは当然であるが、一定摦餌量の目安を得るために本実験を行なった。

実験方法

イカナゴ約300尾ずつ3個の水槽に収容した。水槽は木製4斗樽（内径, 上部49cm, 下部43cm, 深さ43cm）で、イカナゴ漁場の砂、各8ℓ: 海水11ℓ とし、海水の補給は毎分150～200mlを実験中連続して注水した。

Fig.98. Daily variation of the specific gravity and the water temperature from May 24 to June 20 in 1957. Crosses, minimum: solid circles, maximum water temperature.
<table>
<thead>
<tr>
<th>Date</th>
<th>W.T. (°C)</th>
<th>Nauplius</th>
<th>Polyheata</th>
<th>Decapoda</th>
<th>Other</th>
<th>Phyto pl.</th>
<th>Zooplankton</th>
<th>Mollusca</th>
<th>No. of cultured specimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 24</td>
<td>15.5–19.0</td>
<td>214,000</td>
<td>27,000</td>
<td>12,000</td>
<td>24,000</td>
<td>2,400</td>
<td>12,000</td>
<td>50,000</td>
<td>188</td>
</tr>
<tr>
<td>June 1</td>
<td>18.0–21.7</td>
<td>228,000</td>
<td>26,000</td>
<td>13,000</td>
<td>2,400</td>
<td>2,400</td>
<td>3,600</td>
<td>9,000</td>
<td>128</td>
</tr>
<tr>
<td>June 2</td>
<td>18.5–21.7</td>
<td>228,000</td>
<td>36,000</td>
<td>13,000</td>
<td>2,400</td>
<td>6,000</td>
<td>7,200</td>
<td>9,000</td>
<td>118</td>
</tr>
<tr>
<td>June 3</td>
<td>18.0–21.7</td>
<td>228,000</td>
<td>36,000</td>
<td>13,000</td>
<td>2,400</td>
<td>2,400</td>
<td>3,600</td>
<td>9,000</td>
<td>118</td>
</tr>
<tr>
<td>June 4</td>
<td>18.5–21.7</td>
<td>228,000</td>
<td>6,000</td>
<td>3,000</td>
<td>2,400</td>
<td>2,400</td>
<td>3,600</td>
<td>9,000</td>
<td>118</td>
</tr>
<tr>
<td>June 5</td>
<td>18.0–21.7</td>
<td>228,000</td>
<td>6,000</td>
<td>3,000</td>
<td>2,400</td>
<td>2,400</td>
<td>3,600</td>
<td>9,000</td>
<td>118</td>
</tr>
<tr>
<td>June 6</td>
<td>18.5–21.7</td>
<td>228,000</td>
<td>6,000</td>
<td>3,000</td>
<td>2,400</td>
<td>2,400</td>
<td>3,600</td>
<td>9,000</td>
<td>118</td>
</tr>
<tr>
<td>June 7</td>
<td>18.0–21.7</td>
<td>228,000</td>
<td>6,000</td>
<td>3,000</td>
<td>2,400</td>
<td>2,400</td>
<td>3,600</td>
<td>9,000</td>
<td>118</td>
</tr>
<tr>
<td>June 8</td>
<td>18.5–21.7</td>
<td>228,000</td>
<td>6,000</td>
<td>3,000</td>
<td>2,400</td>
<td>2,400</td>
<td>3,600</td>
<td>9,000</td>
<td>118</td>
</tr>
<tr>
<td>June 9</td>
<td>18.0–21.7</td>
<td>228,000</td>
<td>6,000</td>
<td>3,000</td>
<td>2,400</td>
<td>2,400</td>
<td>3,600</td>
<td>9,000</td>
<td>118</td>
</tr>
<tr>
<td>June 10</td>
<td>18.5–21.7</td>
<td>228,000</td>
<td>6,000</td>
<td>3,000</td>
<td>2,400</td>
<td>2,400</td>
<td>3,600</td>
<td>9,000</td>
<td>118</td>
</tr>
<tr>
<td>June 11</td>
<td>18.0–21.7</td>
<td>228,000</td>
<td>6,000</td>
<td>3,000</td>
<td>2,400</td>
<td>2,400</td>
<td>3,600</td>
<td>9,000</td>
<td>118</td>
</tr>
<tr>
<td>June 12</td>
<td>18.5–21.7</td>
<td>228,000</td>
<td>6,000</td>
<td>3,000</td>
<td>2,400</td>
<td>2,400</td>
<td>3,600</td>
<td>9,000</td>
<td>118</td>
</tr>
<tr>
<td>June 13</td>
<td>18.0–21.7</td>
<td>228,000</td>
<td>6,000</td>
<td>3,000</td>
<td>2,400</td>
<td>2,400</td>
<td>3,600</td>
<td>9,000</td>
<td>118</td>
</tr>
<tr>
<td>June 14</td>
<td>18.5–21.7</td>
<td>228,000</td>
<td>6,000</td>
<td>3,000</td>
<td>2,400</td>
<td>2,400</td>
<td>3,600</td>
<td>9,000</td>
<td>118</td>
</tr>
<tr>
<td>June 15</td>
<td>18.0–21.7</td>
<td>228,000</td>
<td>6,000</td>
<td>3,000</td>
<td>2,400</td>
<td>2,400</td>
<td>3,600</td>
<td>9,000</td>
<td>118</td>
</tr>
<tr>
<td>June 16</td>
<td>18.5–21.7</td>
<td>228,000</td>
<td>6,000</td>
<td>3,000</td>
<td>2,400</td>
<td>2,400</td>
<td>3,600</td>
<td>9,000</td>
<td>118</td>
</tr>
<tr>
<td>June 17</td>
<td>18.0–21.7</td>
<td>228,000</td>
<td>6,000</td>
<td>3,000</td>
<td>2,400</td>
<td>2,400</td>
<td>3,600</td>
<td>9,000</td>
<td>118</td>
</tr>
<tr>
<td>June 18</td>
<td>18.5–21.7</td>
<td>228,000</td>
<td>6,000</td>
<td>3,000</td>
<td>2,400</td>
<td>2,400</td>
<td>3,600</td>
<td>9,000</td>
<td>118</td>
</tr>
<tr>
<td>June 19</td>
<td>18.0–21.7</td>
<td>228,000</td>
<td>6,000</td>
<td>3,000</td>
<td>2,400</td>
<td>2,400</td>
<td>3,600</td>
<td>9,000</td>
<td>118</td>
</tr>
<tr>
<td>June 20</td>
<td>18.5–21.7</td>
<td>228,000</td>
<td>6,000</td>
<td>3,000</td>
<td>2,400</td>
<td>2,400</td>
<td>3,600</td>
<td>9,000</td>
<td>118</td>
</tr>
</tbody>
</table>
また酸素の補給は、注入海水を汎うで受け空気と一緒に水槽の底から混入するものと、エアーボンプによるものとの2つの方法を併用した。第1および第2の水槽は、Planktonを給餌してイカナゴの摂餌観察を行ない、海水水にはPlanktonの流出口防止幕を取り付けた。実験開始時における各水槽の水温変化は第8回の通りで、海水比重は午前9時の沿岸定時観測値を示す。すなわち放魚間隔中の比重ならびに水温の最高、最低は、比重（15℃）24.52—25.60；水温15.5—24.5℃であった。給餌に使用したPlanktonは、尾道水道で毎日採集したもので、給餌の際には十分かつ押し、全容器を測定した後その100mlを探り、このPlankton量を算出して給餌個数を推定した。

第65表は、水槽水温、給餌量および摂餌尾数を示す。

第1水槽

第1水槽では、イカナゴの摂餌回数について調べた。5月23日14時から5月26日10時まで、5時間毎に10尾ずつを水槽から取り上げ胃内容物調査を行なった。また5月27日からは、毎日10尾ずつ取り上げて魚体測定を行ない、6月8日に実験を終えた。

第2水槽

第2水槽では、5月23日から5月20日までPlanktonを給餌して飼育し、飼育開始時と飼育終了時との肥満度および脂肪含有量を求めた。標本採集は6月7日100尾、6月19日49尾で実験を終わり残存魚体はフォルマリン固定した。なお実験中、6月16日には海水が流入しなかったので51尾へい死した。

第3水槽

第3水槽では、第2水槽と同じ場所で採集したイカナゴと同じ期間飼育飼育し、肥満度、脂肪含有量を第2水槽の結果と比較した。なお固定には、いずれの場合も20％フォルマリン液を使用した。

実験結果

I．摂餌回数

元田（1960）は、北海道産イカナゴについて、幼魚は夜間捕食活動を行なわず、大親魚より小型魚の消化時間が早いことを報告した。イカナゴの日週期活動について調査した結果では、第13節に述べるように水槽内では、早朝と日没時とに活発な遊泳がみられた。一方投餌飼養者によると、イカナゴは稚魚期には潮流によって遊泳されるが、八十八夜以後では砂中に潜り、潮流の緩やかな時に砂中から出て摂餌するといい。他方淵水付近の堆積潜養魚は、イカナゴは日没時と日出前とに砂中から出て摂餌するとして、同飼養者の操業、遊出時の潮と夕日を限られている。これを要約すると、稚魚期では、潮流に遊泳を摂餌を絶えず行なわれるが、5月中旬以降では、成長したイカナゴの摂餌は、潮流の激しい生息場では、潮汐時と干潮時との潮汐の弱まる時期；潮流のあまり激しくない生息場では、朝夕2回摂餌するが、八十八夜以後では、夜間以外では常に摂餌が行なわれていることになる。本実験は、5月23日から室内飼育魚について観察したものをで、日々の観察数は第65表に示した通りである。調査尾数は毎回10尾ずつとし、5月24日14時から同月26日10時まで5時間隔で採集し、5月26日以後6月8日までは、毎日1回採集して胃内容物を観察した。第66表は摂餌回数調査結果を示すもので、餌の消化管内の位置は、1)食道、2)胃上部、3)胃下部、4)腸上部、5)腸下部に区分した。5月24日の捕食は、10時30分給餌直後で盛んに摂餌行為をするのが観察された。しかし翌日5時には捕餌はみられなかった。5月25日11時30分給餌後の捕食が旺盛に行なわれ、調査を行なった14時には多数のcopepodaが捕食されていた。翌5月26日5時には、ふたたび捕食が行なわれた。5月27日以後では、調査は午前中1回行ったのみで、日中の摂餌状況は判然としないが、6月3日、6月6日の空胃が多い原因は、前日に給餌しなかったことのよう、同じような欠餌の5月26日では翌日の調査が給餌後の14時に行なわれたため、5月27日には欠餌の影響があらわれていない。

第99回は、6月24日から同月20日までの5時間隔で調査した供試魚10尾中の捕食魚数を示す（矢印は給餌）。これによると、3回の山がみられるが、そのうちの2回は給餌直後のものである。
Table 66. Results of the investigation of feeding times in a day.
(Numeral within parenthesis represent the number of having food specimens.)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Average body length</th>
<th>Average body weight</th>
<th>Average condition factor</th>
<th>Oesophagus</th>
<th>Anterior part of stomach</th>
<th>Posterior part of stomach</th>
<th>Anterior part of intestine</th>
<th>Posterior part of intestine</th>
<th>Time of supplying plankton</th>
<th>W.T. (°C)</th>
<th>Sp.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>cm</td>
<td>g</td>
<td></td>
<td>No.</td>
<td>W (mg)</td>
<td>No. W (mg)</td>
<td>No. W (mg)</td>
<td>No. W (mg)</td>
<td>10hr 30min</td>
<td>15.5~19.0</td>
<td>24.95</td>
</tr>
<tr>
<td>May</td>
<td>24</td>
<td>14:00</td>
<td>7.124</td>
<td>1.492</td>
<td>4.1214</td>
<td>372</td>
<td>4.4(6)</td>
<td>4344</td>
<td>83.4(8)</td>
<td>1.9(4)</td>
<td>4.2(6)</td>
<td>10hr 30min</td>
</tr>
<tr>
<td></td>
<td>19:00</td>
<td>6.868</td>
<td>1.266</td>
<td>3.8920</td>
<td>15</td>
<td>0.5(2)</td>
<td>497</td>
<td>21.0(4)</td>
<td>(0)</td>
<td>(0)</td>
<td>0.1(1)</td>
<td>11hr 30min</td>
</tr>
<tr>
<td></td>
<td>24:00</td>
<td>7.027</td>
<td>1.366</td>
<td>3.9224</td>
<td>2</td>
<td>0.00(1)</td>
<td>61</td>
<td>1.6(3)</td>
<td>(0)</td>
<td>3</td>
<td>0.1(1)</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>05:00</td>
<td>7.133</td>
<td>1.430</td>
<td>3.8743</td>
<td>0</td>
<td>5</td>
<td>0.1(1)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>0.2(1)</td>
<td>10hr 30min</td>
</tr>
<tr>
<td></td>
<td>10:00</td>
<td>7.165</td>
<td>1.398</td>
<td>3.7699</td>
<td>0</td>
<td>0.00(1)</td>
<td>(0)</td>
<td>(0)</td>
<td>0.1(1)</td>
<td>7</td>
<td>0.5(3)</td>
<td>11hr 30min</td>
</tr>
<tr>
<td></td>
<td>14:00</td>
<td>7.156</td>
<td>1.496</td>
<td>4.0388</td>
<td>679</td>
<td>14.9(7)</td>
<td>16239</td>
<td>372.1(8)</td>
<td>6.1(4)</td>
<td>7.5(6)</td>
<td>3.2(4)</td>
<td>10hr 30min</td>
</tr>
<tr>
<td></td>
<td>19:00</td>
<td>7.290</td>
<td>1.551</td>
<td>3.9615</td>
<td>0</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>0.6(2)</td>
<td>2</td>
<td>1.2(7)</td>
<td>10hr 30min</td>
</tr>
<tr>
<td></td>
<td>24:00</td>
<td>7.297</td>
<td>1.511</td>
<td>3.8543</td>
<td>0</td>
<td>20</td>
<td>0.5(3)</td>
<td>(0)</td>
<td>0.00(1)</td>
<td>5</td>
<td>0.4(3)</td>
<td>10hr 30min</td>
</tr>
<tr>
<td></td>
<td>05:00</td>
<td>7.138</td>
<td>1.415</td>
<td>3.7818</td>
<td>46</td>
<td>1.2(1)</td>
<td>2152</td>
<td>54.0(9)</td>
<td>1.1(5)</td>
<td>3.2(4)</td>
<td>4.7(3)</td>
<td>10hr 30min</td>
</tr>
<tr>
<td></td>
<td>10:00</td>
<td>7.027</td>
<td>1.380</td>
<td>3.9430</td>
<td>0</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>0.1(2)</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>14:00</td>
<td>7.029</td>
<td>1.382</td>
<td>4.0403</td>
<td>0</td>
<td>(0)</td>
<td>0.2(2)</td>
<td>1.3(5)</td>
<td>1.3(3)</td>
<td>11hr 00min</td>
<td>16.5~19.8</td>
<td>24.79</td>
</tr>
<tr>
<td></td>
<td>03:00</td>
<td>6.960</td>
<td>1.308</td>
<td>3.8493</td>
<td>0</td>
<td>3000</td>
<td>64.5(5)</td>
<td>4.7(4)</td>
<td>9.1(7)</td>
<td>11.7(7)</td>
<td>11hr 00min</td>
<td>17.2~19.8</td>
</tr>
<tr>
<td></td>
<td>09:00</td>
<td>7.048</td>
<td>1.408</td>
<td>4.0017</td>
<td>0</td>
<td>(0)</td>
<td>(0)</td>
<td>4.00(2)</td>
<td>5</td>
<td>0.2(2)</td>
<td>10hr 30min</td>
<td>17.0~19.8</td>
</tr>
<tr>
<td></td>
<td>09:00</td>
<td>7.038</td>
<td>1.381</td>
<td>3.9332</td>
<td>0</td>
<td>0.1(1)</td>
<td>(0)</td>
<td>(0)</td>
<td>1.0(3)</td>
<td>12hr 00min</td>
<td>18.1~20.1</td>
<td>24.78</td>
</tr>
<tr>
<td></td>
<td>09:00</td>
<td>7.060</td>
<td>1.289</td>
<td>3.6621</td>
<td>0</td>
<td>(0)</td>
<td>(0)</td>
<td>0.1(1)</td>
<td>0.4(3)</td>
<td>15hr 45min</td>
<td>17.9~20.8</td>
<td>24.52</td>
</tr>
<tr>
<td>June</td>
<td>09:00</td>
<td>7.113</td>
<td>1.447</td>
<td>3.9889</td>
<td>0</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>1.0(4)</td>
<td>2.5(4)</td>
<td>12hr 30min</td>
<td>18.5~21.7</td>
</tr>
<tr>
<td></td>
<td>09:00~10:30</td>
<td>7.165</td>
<td>1.417</td>
<td>3.8023</td>
<td>0</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>0.1(1)</td>
<td>19.0~22.0</td>
<td>25.18</td>
<td>19.0~22.0</td>
</tr>
<tr>
<td></td>
<td>10:30</td>
<td>7.378</td>
<td>1.526</td>
<td>3.8322</td>
<td>0</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>0.1(1)</td>
<td>10hr 30min</td>
<td>18.6~22.0</td>
</tr>
<tr>
<td></td>
<td>10:30</td>
<td>7.104</td>
<td>1.422</td>
<td>3.9416</td>
<td>0</td>
<td>0.2(1)</td>
<td>0.3(1)</td>
<td>2.4(4)</td>
<td>4.7(6)</td>
<td>10hr 30min</td>
<td>18.5~21.7</td>
<td>24.87</td>
</tr>
<tr>
<td></td>
<td>11:00</td>
<td>7.320</td>
<td>1.543</td>
<td>3.9081</td>
<td>0</td>
<td>6.3(3)</td>
<td>0.6(1)</td>
<td>4.0(3)</td>
<td>2.9(3)</td>
<td>11hr 30min</td>
<td>19.0~22.1</td>
<td>24.65</td>
</tr>
<tr>
<td></td>
<td>08:30</td>
<td>7.328</td>
<td>1.484</td>
<td>3.7531</td>
<td>0</td>
<td>246</td>
<td>21.3(7)</td>
<td>2.8(4)</td>
<td>6.0(7)</td>
<td>8.3(8)</td>
<td>16.2~20.0</td>
<td>24.71</td>
</tr>
<tr>
<td></td>
<td>09:00</td>
<td>7.359</td>
<td>1.513</td>
<td>3.7563</td>
<td>0</td>
<td>282</td>
<td>6.1(5)</td>
<td>(0)</td>
<td>0.4(3)</td>
<td>13</td>
<td>0.6(7)</td>
<td>11hr 30min</td>
</tr>
</tbody>
</table>
これらの結果から推定すると，1日大体2回程度摂餌するもののようにある。

II. 推定摂餌量

Plankton を給餌して飼育した第2水槽の各条件は第65表に示す通りで，第67表に実験開始時のイカナゴ肥満度および給餌した第2水槽と，無給餌の第3水槽とのそれぞれに飼育したイカナゴの平均体長，平均肥満度を標本採集日の順に列挙した。

Table 67. Average body length and fatness of the specimens cultured in the water tanks with or without supply of foods.

<table>
<thead>
<tr>
<th>Date</th>
<th>No.</th>
<th>Body length</th>
<th>Fatness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A. V.</td>
<td>S. D.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. V.</td>
<td>S. D.</td>
</tr>
<tr>
<td>1957</td>
<td>May</td>
<td>215</td>
<td>7.30±0.02</td>
</tr>
<tr>
<td></td>
<td>June</td>
<td>6</td>
<td>104</td>
</tr>
<tr>
<td>(No.</td>
<td></td>
<td>104</td>
<td>7.18±0.03</td>
</tr>
<tr>
<td>2)</td>
<td>20</td>
<td>48</td>
<td>7.30±0.04</td>
</tr>
<tr>
<td>(No.</td>
<td></td>
<td>92</td>
<td>7.31±0.03</td>
</tr>
</tbody>
</table>

第67表を図示すると，第100図のようで，飼養中の体長の伸長はほとんど認められないが，肥満度は実験開始時より次第に低下し，無給餌では低下が著しい。

すなわち，肥満度は30日間の飼養で，給餌したばあい 3.721/4.185×100=88.912（％），無給餌のばあい 3.600/4.185×100=86.021（％）とそれぞれ低下した。したがって自家消費は給餌のばあい肥満度で1日平均0.01600：無給餌のばあい0.02017となる。すなわち給餌による肥満度維持は0.00417である。

第66表に示した給餌直後の摂餌量は2日間2回では，供試標20尾で455.5mg：copepoda に換算して20,583匹となる。1日2回摂餌するから，イカナゴ平均体長7.25cmの1日の摂餌量は，45.55mg，copepoda 2,058.3匹で，この摂餌量による肥満度維持が0.00417とすれば，

\[W/1.25 \times 1000 = 0.00417 \]

すなわち，1.5891mgの体重維持のためにcopepoda 45.55mgが消費されることになる。いえかえると Copepoda によるイカナゴ増肉係数は約3.489％で，ハマチ，アナゴなどにくらべて低い。また自然でのイカナゴ肥満度を，第100図中飼育のもので4.75とすれば，無給餌で29日間飼育したもの肥満度3.60との差1.15か。
Fig. 100. Change of the average body length and the fatness of the specimens cultured in the water tanks with or without supply of foods. Crosses, food supplied; soft circles, no food supplied; double circles, specimens caught from the fishing ground of Nakaze.

から、自然界的摂餌量を推定すると、体長7.25cmのイカナゴは、1日copepoda（主としてParacalanus）を約20,000匹、433,159mgとなる。

豊漁年のイカナゴは魚体が小さく、不漁年の魚体は大きいが、これはイカナゴ1尾当たりの摂餌の量が、前者では小さく従者では大きいためで、イカナゴの体重維持に要する数のcopepodaを必要とすることが原因といえる。

Ⅲ. 消 化 時 間
イカナゴの摂餌回数は、1の実験で1日2回ぐらいと判断された。次に摂餌の消化所要時間をについて調査した。

実験方法
(1) 1957年4月30日採捕したイカナゴ39尾を5月24日まで、室内に飼育したものについて消化時間の実験を行った。

イカナゴ39尾を海水5l注入の内径30cm、高さ15cmのガラス水槽に入れ、10時30分から11時まで30分間copepoda約141,000匹を給餌して摂餌させた。これを別に用意した海水6l、砂1lを入れ、毎分150—200mlの海水が流入するようにしたガラス水槽に移し、供試魚を5時間间隔で7尾ずつ20％フォルマリン液に固定した。なお翌日10時には、供試魚の残り11尾を同時に固定した。

(2) 1957年5月23日立花漁場で採捕したイカナゴを水槽で5月28日まで流水式で無給餌飼育したもの実験材料とした。給餌は5月28日10時55分で、実験(1)と同様Plankton31,000匹（海水ともに約l l）を給餌した後、30分間食餌させた。これを別に用意した海水6l、砂1lを入れ、毎分150—200mlの海水が流入するようにしたガラス水槽に移し、5時間間隔で10尾ずつ20％フォルマリンで固定した。

(3) 1957年6月14日中瀬漁場で採捕したイカナゴ約300尾を、海水11l、砂6lを入れた水槽に収容し,
<table>
<thead>
<tr>
<th>No of experiment</th>
<th>Date</th>
<th>Time</th>
<th>No.</th>
<th>Average body length (cm)</th>
<th>Average body weight (g)</th>
<th>Stomach: Weight (mg)</th>
<th>Anterior part of intestine: Weight (mg)</th>
<th>Middle part of intestine: Weight (mg)</th>
<th>Posterior part of intestine: Weight (mg)</th>
<th>W. T. (°C)</th>
<th>S. P.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1957 May</td>
<td>24</td>
<td>10</td>
<td>8.060</td>
<td>2.216</td>
<td>2021</td>
<td>51.0(7)</td>
<td>2.7(4)</td>
<td>0.2(1)</td>
<td>15.9~18.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14:00</td>
<td>7</td>
<td>7.787</td>
<td>1.694</td>
<td>0</td>
<td>0.9(2)</td>
<td>0</td>
<td>24.44</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19:00</td>
<td>7</td>
<td>8.860</td>
<td>1.706</td>
<td>0</td>
<td>8.7(6)</td>
<td>3.7(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24:00</td>
<td>7</td>
<td>8.530</td>
<td>2.074</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>May</td>
<td>25</td>
<td>5:00</td>
<td>7</td>
<td>7.304</td>
<td>1.343</td>
<td>2.2(1)</td>
<td>0</td>
<td>0.5(1)</td>
<td>17.2~21.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.519</td>
<td>1.388</td>
<td>0.1(1)</td>
<td>0</td>
<td>0.3(1)</td>
<td>24.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>May</td>
<td>28</td>
<td>11:00</td>
<td>10</td>
<td>7.228</td>
<td>1.554</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>0.5(1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14:30</td>
<td>10</td>
<td>7.503</td>
<td>1.629</td>
<td>3.9(7)</td>
<td>0</td>
<td>1.0(4)</td>
<td>0.8(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19:00</td>
<td>10</td>
<td>7.207</td>
<td>1.476</td>
<td>0</td>
<td>0.9(4)</td>
<td>1.6(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>May</td>
<td>29</td>
<td>0:30</td>
<td>10</td>
<td>7.420</td>
<td>1.608</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.5(1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5:30</td>
<td>10</td>
<td>7.366</td>
<td>1.573</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.2(1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10:30</td>
<td>10</td>
<td>7.535</td>
<td>1.676</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>June</td>
<td>21</td>
<td>10:30</td>
<td>10</td>
<td>7.953</td>
<td>2.102</td>
<td>827</td>
<td>33(10)</td>
<td>663(1)</td>
<td>21.4~24.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>353</td>
<td>3.9(5)</td>
<td>2.4(4)</td>
<td>1.0(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13:00</td>
<td>10</td>
<td>7.793</td>
<td>1.835</td>
<td>1728</td>
<td>15.7(10)</td>
<td>1.6(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15:00</td>
<td>10</td>
<td>7.964</td>
<td>2.068</td>
<td>406(9)</td>
<td>0.9(4)</td>
<td>5.1(10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>9.2(6)</td>
<td>0.3(2)</td>
<td>3.9(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19:00</td>
<td>10</td>
<td>7.805</td>
<td>1.952</td>
<td>683</td>
<td>40.6(9)</td>
<td>6.6(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>6.9(9)</td>
<td>0.2(5)</td>
<td>6.2(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>June</td>
<td>22</td>
<td>1:00</td>
<td>10</td>
<td>7.862</td>
<td>2.033</td>
<td>2.8(4)</td>
<td>0.1(2)</td>
<td>9.4(5)</td>
<td>21.5~21.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.9(5)</td>
<td>0.1(1)</td>
<td>0.2(2)</td>
<td>0.9(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.6(3)</td>
<td>0(1)</td>
<td>0.2(2)</td>
<td>1.1(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0(3)</td>
<td>0(1)</td>
<td>0(3)</td>
<td>0(5)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 68. Experimental results of the digestive times.
(Numerals within parentheses represent the number of having food specimens.)
毎分300—250mℓの海水を注入した。これを6月21日まで水温18.0—24.5℃で室内に飼育し、前回と同様な方法で6月21日10時30分から11時30分まで planktonを給餌して捕食させ、13時から2時間間隔で10尾ずつ20％フォルマリンで固定し調査した。給餌したplanktonは4.7ℓで、1ℓ中のcopepodaは93匹、その他の動物性plankton21匹、植物性plankton133で、100mℓ当たりの沈水量、排水量は、1.93mℓ、0.58mℓであった。

実験結果
第68表は、(1)、(2)、(3)の実験経過を示す。
(1)および(2)の実験では5時間間隔で標本を採り、(3)では2時間間隔で標本を採ったが、これらの実験から判明したことは、(2)胃の中の餌は、いずれの場合も共通して摂餌後12時間で空胃となる。(3)摂餌数時間で一部の消化は終わり排泄される。(4)消化が完全に終わるのは摂餌後約16時間であることであった。

第13節 脂肪含有量の季節的変化
脂肪含有量の大きいことは、食品加工あるいは、調剤として冷蔵保管の面から障害となっている。ことに5月以降に漁獲されるイカナゴは、乾燥品または冷凍品ともに油焼けしやすい。

(1) 漁場別イカナゴの変化
脂肪含有量の季節的変化について、1957、1959年に調査した結果について報告する。

調査方法
生鮮なイカナゴの体表面を乾燥した脱脂綿で拭き、水分を除き秤量した後、乾燥器に入れ100℃以下で十分乾燥し、さらに数日間デンターターに放置し乾燥秤量して水分を求め、ソックスレードで煮沸にしたがって脂肪を抽出測定した。なお、イカナゴの水分をトールで抽出することを試みたが、トールがはなはだしく着色するので同一試料について前記の乾燥方法と併用し、水分測定値が両者で近似したものを平均して水分含有量とした。なお1回の供試尾数は、当才魚のばあい10尾、2才魚のばあい3—5尾とした。

調査結果
第69表、イカナゴの採捕漁場と採捕日別に、当才魚と2才魚を区別して水分と脂肪との百分率を示し、第101図は、第69表から脂肪含有量の季節的変化を示したのである。
まず当才魚についてみると、4月3日に立花漁場採捕のイカナゴは、脂肪含有量が大きく7.74％で幾分異例に属するが、その他のものは大体線形にあり、当才魚の脂肪含有量の増加傾向が直線的であることを示す。1才魚は、2月には脂肪が2％で小さいが、当才魚よりも増加の割合が大きく、4月下旬に9％に達する。これを絵中（1962）らの10.46％にかくべると幾分小さい。

Table 69. Experimental results of the variation of crude fat and moisture, showed in per cent.

<table>
<thead>
<tr>
<th>Landing place</th>
<th>Date</th>
<th>Moisture</th>
<th>Fat</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nakaze</td>
<td>1957 May 23</td>
<td>68,015</td>
<td>8.074</td>
<td>0</td>
</tr>
<tr>
<td>1959 Feb. 23</td>
<td>78,235</td>
<td>2.000</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mar. 16</td>
<td>76,513</td>
<td>4.133</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Apr. 29</td>
<td>72,951</td>
<td>5.632</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>May 26</td>
<td>70,419</td>
<td>9.131</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Jun. 2</td>
<td>72,041</td>
<td>8.522</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tachibana</td>
<td>Apr. 3</td>
<td>75,580</td>
<td>7.735</td>
<td>0</td>
</tr>
<tr>
<td>May 15</td>
<td>73,302</td>
<td>7.209</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hashiri-shima</td>
<td>Mar. 17</td>
<td>78,329</td>
<td>2.242</td>
<td>0</td>
</tr>
<tr>
<td>Iwaki-shima</td>
<td>Mar. 27</td>
<td>78,528</td>
<td>2.686</td>
<td>0</td>
</tr>
</tbody>
</table>
Fig. 101. Variation of the percentage of crude fat.
- ○, Nakaze; △, Tachibana; ‡, Hashirishima ‡, Iwaki-shima solid line, 1-year fish; broken line, 0-year fish.

(2) 室内飼育魚の脂肪変化

イカナゴの脂肪は、体の大きさ、生息環境、飼料、季節などにより変化するが、飼育魚について無飼育と飼育のばあいを比較した。

調査方法

実験は、1957年5月23日に採捕した材料および、このうち50尾を6月17日まで流水式で飼育と無飼育に分けて室内飼育したものについて行なった。供試魚は、体長7.0－7.7cmでそれぞれ20尾ずつを天日乾燥して水分を除去し、ソックスレーでアセトン抽出を5時間行なって粗脂肪を求め、残渣はトロールで水分を除き、乾燥後秤量して乾物量を求めた。

実験結果

実験結果は、第70表に示す通りで、水分は5月23日実験開始前の試料では68.02％であるが、飼育区、無飼育区とも水分は増加し、特に無飼育区では著しい増加を示す。粗脂肪についてみると、水分とは逆に減少し、実験開始前では8％であったが、6月17日まで飼育した無飼育区では6％以下に減少した。

Table 70. Experimental results of the variation of crude fat and moisture of the specimens cultured in the two water-tanks, with and without food supply.

<table>
<thead>
<tr>
<th>Specimen</th>
<th>1957 May 23</th>
<th>May 23–June 17 (Food supplied)</th>
<th>May 23–June 17 (Food unsupplied)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Body length (cm)</td>
<td>Body weight (g)</td>
<td>Body length (cm)</td>
</tr>
<tr>
<td>1</td>
<td>7.36</td>
<td>1.62</td>
<td>7.08</td>
</tr>
<tr>
<td>2</td>
<td>7.47</td>
<td>1.74</td>
<td>7.40</td>
</tr>
<tr>
<td>3</td>
<td>7.35</td>
<td>1.69</td>
<td>7.40</td>
</tr>
<tr>
<td>4</td>
<td>7.19</td>
<td>1.52</td>
<td>7.39</td>
</tr>
<tr>
<td>5</td>
<td>7.10</td>
<td>1.52</td>
<td>7.41</td>
</tr>
<tr>
<td>6</td>
<td>7.11</td>
<td>1.54</td>
<td>7.42</td>
</tr>
<tr>
<td>7</td>
<td>7.40</td>
<td>1.60</td>
<td>7.12</td>
</tr>
<tr>
<td>8</td>
<td>7.30</td>
<td>1.50</td>
<td>7.00</td>
</tr>
<tr>
<td>9</td>
<td>7.20</td>
<td>1.66</td>
<td>7.32</td>
</tr>
<tr>
<td>10</td>
<td>7.49</td>
<td>1.71</td>
<td>7.37</td>
</tr>
<tr>
<td>11</td>
<td>7.28</td>
<td>1.44</td>
<td>7.30</td>
</tr>
<tr>
<td>12</td>
<td>7.32</td>
<td>1.65</td>
<td>7.26</td>
</tr>
<tr>
<td>13</td>
<td>7.23</td>
<td>1.59</td>
<td>7.31</td>
</tr>
<tr>
<td>14</td>
<td>7.00</td>
<td>1.42</td>
<td>7.30</td>
</tr>
<tr>
<td>15</td>
<td>7.37</td>
<td>1.83</td>
<td>7.28</td>
</tr>
<tr>
<td>16</td>
<td>7.30</td>
<td>1.66</td>
<td>7.29</td>
</tr>
<tr>
<td>17</td>
<td>7.40</td>
<td>1.67</td>
<td>7.35</td>
</tr>
<tr>
<td>18</td>
<td>7.31</td>
<td>1.65</td>
<td>7.29</td>
</tr>
<tr>
<td>19</td>
<td>7.15</td>
<td>1.66</td>
<td>7.70</td>
</tr>
<tr>
<td>20</td>
<td>7.46</td>
<td>1.45</td>
<td>7.40</td>
</tr>
<tr>
<td>Total</td>
<td>32.12</td>
<td></td>
<td>29.72</td>
</tr>
<tr>
<td>Moisture</td>
<td>21.8466g/32.12g = 68.0155 (%)</td>
<td>21.677g/29.72g = 71.5602 (%)</td>
<td>22.6508g/30.83g = 73.4699 (%)</td>
</tr>
<tr>
<td>Crud fat</td>
<td>2.5934g/32.12g = 8.0749 (%)</td>
<td>2.1032g/29.72g = 7.0767 (%)</td>
<td>1.8092g/30.83g = 5.8683 (%)</td>
</tr>
<tr>
<td>Date</td>
<td>W. T. (°C)</td>
<td>SP</td>
<td>Settling volume</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td>----</td>
<td>-----------------</td>
</tr>
<tr>
<td>Man</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-31, day</td>
<td>19.4623, 106</td>
<td>57.76</td>
<td>19.00</td>
</tr>
<tr>
<td>11-20, day</td>
<td>21.6323, 260</td>
<td>34.29</td>
<td>14.63</td>
</tr>
<tr>
<td>Average</td>
<td>20.0223, 133</td>
<td>20.52</td>
<td>11.12</td>
</tr>
<tr>
<td>July 1-10,</td>
<td>23.7122, 359</td>
<td>10.24</td>
<td>5.08</td>
</tr>
<tr>
<td>Average</td>
<td>23.5523, 207</td>
<td>21.38</td>
<td>7.37</td>
</tr>
<tr>
<td>Avg. Sep.</td>
<td>27.7022, 265</td>
<td>43.84</td>
<td>9.27</td>
</tr>
<tr>
<td>10-10, day</td>
<td>27.1923, 212</td>
<td>18.45</td>
<td>6.26</td>
</tr>
<tr>
<td>Average</td>
<td>27.4523, 239</td>
<td>32.98</td>
<td>7.77</td>
</tr>
<tr>
<td>11-20, day</td>
<td>28.0223, 551</td>
<td>10.18</td>
<td>4.44</td>
</tr>
<tr>
<td>Avg. Oct.</td>
<td>27.8022, 677</td>
<td>39.91</td>
<td>9.96</td>
</tr>
<tr>
<td>1-10, day</td>
<td>27.4223, 690</td>
<td>20.16</td>
<td>7.70</td>
</tr>
<tr>
<td>Average</td>
<td>27.5923, 396</td>
<td>32.16</td>
<td>6.29</td>
</tr>
<tr>
<td>1-10, day</td>
<td>27.9823, 169</td>
<td>14.67</td>
<td>7.05</td>
</tr>
<tr>
<td>Average</td>
<td>24.7023, 914</td>
<td>18.71</td>
<td>8.65</td>
</tr>
<tr>
<td>Avg. Nov.</td>
<td>22.3623, 858</td>
<td>12.16</td>
<td>6.29</td>
</tr>
<tr>
<td>11-20, day</td>
<td>21.5823, 799</td>
<td>11.19</td>
<td>6.61</td>
</tr>
<tr>
<td>Average</td>
<td>21.1723, 689</td>
<td>9.01</td>
<td>5.87</td>
</tr>
<tr>
<td>21-31, day</td>
<td>20.0223, 895</td>
<td>21.76</td>
<td>9.07</td>
</tr>
<tr>
<td>Average</td>
<td>19.1223, 874</td>
<td>18.88</td>
<td>9.07</td>
</tr>
<tr>
<td>11-20, day</td>
<td>19.5723, 865</td>
<td>20.32</td>
<td>9.07</td>
</tr>
<tr>
<td>Average</td>
<td>17.6723, 658</td>
<td>10.71</td>
<td>5.73</td>
</tr>
</tbody>
</table>

Table 71. Result of the survey conducted every high tide a day and
Every average ten days, from May 21, 1955 to August 20, 1956.

<table>
<thead>
<tr>
<th>Polychaeta</th>
<th>Gastro-poda</th>
<th>Bivalvia</th>
<th>Nectiluca</th>
<th>Penilia</th>
<th>Isopoda</th>
<th>Fish egg</th>
<th>Other zooplankton</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,068</td>
<td>454</td>
<td>104</td>
<td>1,134</td>
<td>17</td>
<td>0</td>
<td>71</td>
<td>497</td>
</tr>
<tr>
<td>755</td>
<td>252</td>
<td>60</td>
<td>1,919</td>
<td>38</td>
<td>20</td>
<td>56</td>
<td>203</td>
</tr>
<tr>
<td>44</td>
<td>171</td>
<td>22</td>
<td>797</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>254</td>
</tr>
<tr>
<td>390</td>
<td>212</td>
<td>41</td>
<td>1,358</td>
<td>19</td>
<td>10</td>
<td>28</td>
<td>229</td>
</tr>
<tr>
<td>1,000</td>
<td>325</td>
<td>0</td>
<td>373</td>
<td>0</td>
<td>18</td>
<td>0</td>
<td>209</td>
</tr>
<tr>
<td>171</td>
<td>416</td>
<td>16</td>
<td>131</td>
<td>0</td>
<td>24</td>
<td>0</td>
<td>96</td>
</tr>
<tr>
<td>586</td>
<td>371</td>
<td>8</td>
<td>252</td>
<td>0</td>
<td>21</td>
<td>0</td>
<td>153</td>
</tr>
<tr>
<td>1,280</td>
<td>743</td>
<td>18</td>
<td>644</td>
<td>16</td>
<td>19</td>
<td>0</td>
<td>152</td>
</tr>
<tr>
<td>137</td>
<td>551</td>
<td>97</td>
<td>261</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>121</td>
</tr>
<tr>
<td>709</td>
<td>647</td>
<td>58</td>
<td>453</td>
<td>8</td>
<td>10</td>
<td>0</td>
<td>137</td>
</tr>
<tr>
<td>1,104</td>
<td>1,597</td>
<td>443</td>
<td>457</td>
<td>0</td>
<td>35</td>
<td>16</td>
<td>696</td>
</tr>
<tr>
<td>82</td>
<td>1,546</td>
<td>94</td>
<td>37</td>
<td>0</td>
<td>21</td>
<td>0</td>
<td>288</td>
</tr>
<tr>
<td>503</td>
<td>1,572</td>
<td>269</td>
<td>247</td>
<td>0</td>
<td>28</td>
<td>8</td>
<td>492</td>
</tr>
<tr>
<td>2,102</td>
<td>504</td>
<td>812</td>
<td>185</td>
<td>35</td>
<td>18</td>
<td>0</td>
<td>185</td>
</tr>
<tr>
<td>457</td>
<td>882</td>
<td>186</td>
<td>121</td>
<td>0</td>
<td>92</td>
<td>0</td>
<td>197</td>
</tr>
<tr>
<td>1,280</td>
<td>693</td>
<td>499</td>
<td>153</td>
<td>18</td>
<td>55</td>
<td>0</td>
<td>191</td>
</tr>
<tr>
<td>969</td>
<td>401</td>
<td>920</td>
<td>331</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>192</td>
</tr>
<tr>
<td>133</td>
<td>350</td>
<td>533</td>
<td>178</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>418</td>
</tr>
<tr>
<td>551</td>
<td>376</td>
<td>727</td>
<td>255</td>
<td>14</td>
<td>8</td>
<td>0</td>
<td>305</td>
</tr>
<tr>
<td>518</td>
<td>1,985</td>
<td>3,363</td>
<td>163</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>340</td>
</tr>
<tr>
<td>61</td>
<td>544</td>
<td>317</td>
<td>120</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>809</td>
</tr>
<tr>
<td>290</td>
<td>1,265</td>
<td>1,840</td>
<td>142</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>575</td>
</tr>
<tr>
<td>235</td>
<td>765</td>
<td>1,291</td>
<td>128</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>269</td>
</tr>
<tr>
<td>40</td>
<td>553</td>
<td>403</td>
<td>140</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>363</td>
</tr>
<tr>
<td>138</td>
<td>659</td>
<td>847</td>
<td>134</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>326</td>
</tr>
<tr>
<td>235</td>
<td>227</td>
<td>678</td>
<td>72</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>191</td>
</tr>
<tr>
<td>16</td>
<td>447</td>
<td>275</td>
<td>34</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>394</td>
</tr>
<tr>
<td>126</td>
<td>337</td>
<td>477</td>
<td>53</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>293</td>
</tr>
<tr>
<td>243</td>
<td>528</td>
<td>595</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>268</td>
</tr>
<tr>
<td>0</td>
<td>630</td>
<td>299</td>
<td>42</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>101</td>
</tr>
<tr>
<td>122</td>
<td>579</td>
<td>447</td>
<td>121</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>185</td>
</tr>
<tr>
<td>360</td>
<td>157</td>
<td>56</td>
<td>194</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>75</td>
</tr>
<tr>
<td>2</td>
<td>221</td>
<td>218</td>
<td>64</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>346</td>
</tr>
<tr>
<td>181</td>
<td>189</td>
<td>137</td>
<td>129</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>211</td>
</tr>
<tr>
<td>277</td>
<td>116</td>
<td>328</td>
<td>180</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>93</td>
</tr>
<tr>
<td>85</td>
<td>591</td>
<td>407</td>
<td>122</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>144</td>
</tr>
<tr>
<td>181</td>
<td>354</td>
<td>368</td>
<td>151</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>119</td>
</tr>
<tr>
<td>121</td>
<td>201</td>
<td>262</td>
<td>102</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>280</td>
</tr>
<tr>
<td>76</td>
<td>131</td>
<td>850</td>
<td>152</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>106</td>
</tr>
<tr>
<td>99</td>
<td>166</td>
<td>556</td>
<td>127</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>193</td>
</tr>
<tr>
<td>113</td>
<td>168</td>
<td>1,335</td>
<td>392</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>131</td>
</tr>
<tr>
<td>122</td>
<td>453</td>
<td>2,962</td>
<td>351</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>143</td>
</tr>
<tr>
<td>118</td>
<td>311</td>
<td>2,149</td>
<td>372</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>137</td>
</tr>
<tr>
<td>215</td>
<td>159</td>
<td>1,207</td>
<td>7,146</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>53</td>
</tr>
<tr>
<td>103</td>
<td>190</td>
<td>2,006</td>
<td>590</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>109</td>
</tr>
<tr>
<td>159</td>
<td>175</td>
<td>1,607</td>
<td>3,868</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>81</td>
</tr>
<tr>
<td>36</td>
<td>107</td>
<td>1,673</td>
<td>282</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>237</td>
<td>509</td>
<td>2,419</td>
<td>82</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>46</td>
</tr>
</tbody>
</table>

Plankton | Meteorological conditions

<table>
<thead>
<tr>
<th>A. T. (°C)</th>
<th>Amount of rainfall (mm/day)</th>
<th>Velocity of wind (km/day)</th>
<th>Time of sunshine (hr. / day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.39</td>
<td>1.536</td>
<td>157.95</td>
<td>7.78</td>
</tr>
<tr>
<td>20.21</td>
<td>6.000</td>
<td>114.83</td>
<td>5.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.25</td>
<td>7.480</td>
<td>127.39</td>
<td>5.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.21</td>
<td>4.420</td>
<td>171.91</td>
<td>7.81</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.73</td>
<td>3.100</td>
<td>114.63</td>
<td>8.84</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.48</td>
<td>0.050</td>
<td>116.40</td>
<td>10.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.92</td>
<td>0.000</td>
<td>135.81</td>
<td>11.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.84</td>
<td>3.591</td>
<td>123.24</td>
<td>5.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.72</td>
<td>2.300</td>
<td>109.92</td>
<td>6.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.04</td>
<td>4.690</td>
<td>200.56</td>
<td>6.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.16</td>
<td>2.700</td>
<td>162.69</td>
<td>3.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.98</td>
<td>2.940</td>
<td>113.18</td>
<td>6.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.59</td>
<td>3.100</td>
<td>130.93</td>
<td>5.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.55</td>
<td>0.900</td>
<td>126.82</td>
<td>5.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.03</td>
<td>0.000</td>
<td>178.46</td>
<td>6.71</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>W. T. (°C)</th>
<th>SP.</th>
<th>Settling volume</th>
<th>Displaced volume</th>
<th>Ignition residuum</th>
<th>Total number</th>
<th>Copepoda</th>
<th>Nauplius</th>
<th>Decapoda</th>
<th>Chaetognatha</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(mL/1,000 g)</td>
<td>(mL/1,000 g)</td>
<td>(g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov. 11-20, day</td>
<td>16.4523,761</td>
<td>6.20</td>
<td>4.35</td>
<td>0.07625</td>
<td>7673</td>
<td>4,472</td>
<td>1,775</td>
<td>0</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Nov. 21-30, day</td>
<td>14.8723,794</td>
<td>13.18</td>
<td>7.05</td>
<td>0.08353</td>
<td>7638</td>
<td>5,566</td>
<td>1,259</td>
<td>0</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Dec. 1-10, day</td>
<td>13.6223,806</td>
<td>11.29</td>
<td>6.53</td>
<td>0.07316</td>
<td>8221</td>
<td>5,959</td>
<td>1,346</td>
<td>0</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Jan. 1-10, day</td>
<td>11.0924,861</td>
<td>48.24</td>
<td>10.31</td>
<td>0.09880</td>
<td>6008</td>
<td>4,584</td>
<td>956</td>
<td>0</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Feb. 1-10, day</td>
<td>9.3524,869</td>
<td>82.72</td>
<td>18.37</td>
<td>0.17166</td>
<td>20309</td>
<td>17,210</td>
<td>2,166</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mar. 1-10, day</td>
<td>9.0524,796</td>
<td>20.81</td>
<td>6.44</td>
<td>0.09243</td>
<td>8465</td>
<td>5,559</td>
<td>2,274</td>
<td>0</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Apr. 1-10, day</td>
<td>7.7724,500</td>
<td>12.06</td>
<td>5.19</td>
<td>0.02503</td>
<td>7691</td>
<td>5,368</td>
<td>1,746</td>
<td>0</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>May 1-10, day</td>
<td>7.9524,643</td>
<td>16.44</td>
<td>5.82</td>
<td>0.05873</td>
<td>8080</td>
<td>5,464</td>
<td>2,010</td>
<td>0</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>June 1-10, day</td>
<td>10.1024,641</td>
<td>30.15</td>
<td>8.55</td>
<td>0.10700</td>
<td>9448</td>
<td>5,131</td>
<td>3,518</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>July 1-10, day</td>
<td>8.5424,710</td>
<td>7.58</td>
<td>4.82</td>
<td>0.03372</td>
<td>6782</td>
<td>1,814</td>
<td>4,821</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aug. 1-10, day</td>
<td>9.3224,676</td>
<td>18.87</td>
<td>6.69</td>
<td>0.07036</td>
<td>8118</td>
<td>3,473</td>
<td>1,710</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sep. 1-10, day</td>
<td>11.2624,501</td>
<td>23.50</td>
<td>6.47</td>
<td>0.06356</td>
<td>7286</td>
<td>2,791</td>
<td>3,978</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Oct. 1-10, day</td>
<td>12.5324,556</td>
<td>15.36</td>
<td>5.92</td>
<td>0.03943</td>
<td>3492</td>
<td>1,942</td>
<td>2,175</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nov. 1-10, day</td>
<td>11.6924,529</td>
<td>19.43</td>
<td>6.20</td>
<td>0.0925</td>
<td>5392</td>
<td>1,942</td>
<td>3,077</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Dec. 1-10, day</td>
<td>14.3124,438</td>
<td>42.76</td>
<td>10.17</td>
<td>0.14289</td>
<td>11682</td>
<td>4,532</td>
<td>6,000</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Jan. 1-10, day</td>
<td>14.4324,555</td>
<td>17.23</td>
<td>5.68</td>
<td>0.03833</td>
<td>6558</td>
<td>967</td>
<td>5,378</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Plankton

<table>
<thead>
<tr>
<th>Polychaeta</th>
<th>Gastro- poda</th>
<th>Bivalvia</th>
<th>Noctiluca</th>
<th>Penilia</th>
<th>Isopoda</th>
<th>Fish egg</th>
<th>Other zooplankton</th>
</tr>
</thead>
<tbody>
<tr>
<td>137</td>
<td>308</td>
<td>2,046</td>
<td>182</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>53</td>
</tr>
<tr>
<td>131</td>
<td>91</td>
<td>594</td>
<td>494</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>97</td>
</tr>
<tr>
<td>230</td>
<td>151</td>
<td>947</td>
<td>108</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>214</td>
</tr>
<tr>
<td>181</td>
<td>121</td>
<td>771</td>
<td>301</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>156</td>
</tr>
<tr>
<td>296</td>
<td>133</td>
<td>339</td>
<td>146</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>207</td>
<td>139</td>
<td>68</td>
<td>204</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>252</td>
<td>136</td>
<td>204</td>
<td>175</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>130</td>
</tr>
<tr>
<td>83</td>
<td>63</td>
<td>186</td>
<td>231</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>61</td>
</tr>
<tr>
<td>310</td>
<td>218</td>
<td>362</td>
<td>217</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>209</td>
</tr>
<tr>
<td>197</td>
<td>141</td>
<td>274</td>
<td>224</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>135</td>
</tr>
<tr>
<td>130</td>
<td>74</td>
<td>56</td>
<td>224</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>76</td>
</tr>
<tr>
<td>148</td>
<td>207</td>
<td>63</td>
<td>81</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>139</td>
<td>141</td>
<td>60</td>
<td>153</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>39</td>
</tr>
<tr>
<td>105</td>
<td>101</td>
<td>176</td>
<td>207</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>77</td>
<td>57</td>
<td>174</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>91</td>
<td>79</td>
<td>175</td>
<td>124</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>37</td>
<td>76</td>
<td>95</td>
<td>174</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>57</td>
</tr>
<tr>
<td>193</td>
<td>176</td>
<td>264</td>
<td>220</td>
<td>0</td>
<td>21</td>
<td>1</td>
<td>57</td>
</tr>
<tr>
<td>115</td>
<td>126</td>
<td>180</td>
<td>197</td>
<td>0</td>
<td>11</td>
<td>1</td>
<td>57</td>
</tr>
<tr>
<td>78</td>
<td>257</td>
<td>191</td>
<td>207</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>70</td>
<td>43</td>
<td>108</td>
<td>170</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>22</td>
</tr>
<tr>
<td>74</td>
<td>150</td>
<td>150</td>
<td>189</td>
<td>0</td>
<td>11</td>
<td>1</td>
<td>31</td>
</tr>
<tr>
<td>51</td>
<td>85</td>
<td>407</td>
<td>170</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>103</td>
</tr>
<tr>
<td>38</td>
<td>56</td>
<td>130</td>
<td>187</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>75</td>
</tr>
<tr>
<td>45</td>
<td>71</td>
<td>269</td>
<td>179</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>89</td>
</tr>
<tr>
<td>135</td>
<td>78</td>
<td>343</td>
<td>601</td>
<td>0</td>
<td>0</td>
<td>96</td>
<td>0.330</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>155</td>
<td>207</td>
<td>0</td>
<td>0</td>
<td>75</td>
<td>212.00</td>
</tr>
<tr>
<td>78</td>
<td>49</td>
<td>249</td>
<td>404</td>
<td>0</td>
<td>0</td>
<td>86</td>
<td>4.5</td>
</tr>
<tr>
<td>56</td>
<td>134</td>
<td>247</td>
<td>247</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>113</td>
</tr>
<tr>
<td>42</td>
<td>146</td>
<td>543</td>
<td>104</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>126</td>
</tr>
<tr>
<td>49</td>
<td>140</td>
<td>395</td>
<td>176</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>120</td>
</tr>
<tr>
<td>61</td>
<td>103</td>
<td>167</td>
<td>149</td>
<td>0</td>
<td>0</td>
<td>106</td>
<td>3.29</td>
</tr>
<tr>
<td>48</td>
<td>0</td>
<td>45</td>
<td>289</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>116</td>
</tr>
<tr>
<td>55</td>
<td>52</td>
<td>106</td>
<td>219</td>
<td>0</td>
<td>0</td>
<td>111</td>
<td>4.29</td>
</tr>
<tr>
<td>76</td>
<td>94</td>
<td>170</td>
<td>177</td>
<td>0</td>
<td>0</td>
<td>115</td>
<td>4.29</td>
</tr>
<tr>
<td>139</td>
<td>78</td>
<td>192</td>
<td>108</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>108</td>
<td>86</td>
<td>181</td>
<td>143</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>78</td>
</tr>
<tr>
<td>53</td>
<td>150</td>
<td>466</td>
<td>55</td>
<td>0</td>
<td>0</td>
<td>75</td>
<td>8.310</td>
</tr>
<tr>
<td>27</td>
<td>85</td>
<td>244</td>
<td>28</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>88</td>
</tr>
<tr>
<td>17</td>
<td>103</td>
<td>139</td>
<td>136</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>120</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>18</td>
<td>18</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>187</td>
</tr>
<tr>
<td>9</td>
<td>52</td>
<td>79</td>
<td>77</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>154</td>
</tr>
<tr>
<td>58</td>
<td>135</td>
<td>19</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>197</td>
<td>8.82</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>136</td>
</tr>
<tr>
<td>29</td>
<td>68</td>
<td>30</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>152</td>
<td>402</td>
<td>135</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>409</td>
<td>14.33</td>
</tr>
<tr>
<td>24</td>
<td>21</td>
<td>73</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>95</td>
<td>8.77</td>
</tr>
</tbody>
</table>

Meteorological conditions

<table>
<thead>
<tr>
<th>A. T. (°C)</th>
<th>Amount of rainfall (mm/day)</th>
<th>Velocity of wind (km/day)</th>
<th>Time of sunshine (hr/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.29</td>
<td>1.460</td>
<td>247.78</td>
<td>5.94</td>
</tr>
<tr>
<td>2.76</td>
<td>0.620</td>
<td>179.00</td>
<td>5.29</td>
</tr>
<tr>
<td>3.29</td>
<td>1.460</td>
<td>247.78</td>
<td>5.94</td>
</tr>
<tr>
<td>4.29</td>
<td>2.500</td>
<td>154.50</td>
<td>5.22</td>
</tr>
<tr>
<td>8.82</td>
<td>2.340</td>
<td>124.00</td>
<td>5.01</td>
</tr>
<tr>
<td>11.13</td>
<td>3.518</td>
<td>135.91</td>
<td>4.95</td>
</tr>
<tr>
<td>8.310</td>
<td>6.670</td>
<td>162.50</td>
<td>5.26</td>
</tr>
<tr>
<td>14.33</td>
<td>2.000</td>
<td>147.00</td>
<td>8.77</td>
</tr>
</tbody>
</table>

---149---
第14節 論者としての Plankton の季節的変化

Planktonは最も重要な魚類の餌料で、古くから多数の数値が報告されている。Planktonはイカを餌料としても重要であること、さらに食性について述べた通りである。また copepodaのように、その季節的変動が、これを摂食する魚類によって制限されていることも見逃せないことで、イカの豊囲とカタクリの変化が似いになるということであり、あるいは降雨の多い年には、カタクリが豊盛であることに、いずれも論者としての Plankton 量の多寡に関係するようである。著者は一人井田は、沿岸の Plankton 变動を知るために1955年5月から1966年8月まで、毎日毎日午後4時（水深1〜3 m）に、ポンプ採水して Plankton 量の変動を調査した。

研究方法
1）採集方法

<table>
<thead>
<tr>
<th>日時</th>
<th>W.T. (°C)</th>
<th>SP.</th>
<th>浮遊体</th>
<th>Displaced volume</th>
<th>Ignition residue</th>
<th>Total number</th>
<th>Copepoda</th>
<th>Nauplius</th>
<th>Decapoda</th>
<th>Chaetognatha</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Plankton</td>
<td>(ml/ 1,000 g)</td>
<td>(g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr. 21-30, day</td>
<td>14.37</td>
<td>24.49</td>
<td>29.99</td>
<td>7.93</td>
<td>0.09057</td>
<td>9122</td>
<td>2,750</td>
<td>5,698</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>" " night</td>
<td>14.93</td>
<td>24.50</td>
<td>21.07</td>
<td>7.01</td>
<td>0.07013</td>
<td>9097</td>
<td>2,638</td>
<td>5,508</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Average</td>
<td>15.15</td>
<td>24.54</td>
<td>15.32</td>
<td>6.30</td>
<td>0.05927</td>
<td>7135</td>
<td>2,034</td>
<td>4,345</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>May. 1-10, day</td>
<td>15.84</td>
<td>24.69</td>
<td>36.02</td>
<td>9.03</td>
<td>0.08865</td>
<td>6691</td>
<td>3,188</td>
<td>2,507</td>
<td>99</td>
<td>0</td>
</tr>
<tr>
<td>" " night</td>
<td>15.83</td>
<td>24.73</td>
<td>14.50</td>
<td>5.65</td>
<td>0.04180</td>
<td>2480</td>
<td>2,005</td>
<td>1,010</td>
<td>58</td>
<td>0</td>
</tr>
<tr>
<td>Average</td>
<td>15.84</td>
<td>24.71</td>
<td>25.26</td>
<td>7.34</td>
<td>0.06197</td>
<td>5173</td>
<td>2,397</td>
<td>1,774</td>
<td>79</td>
<td>0</td>
</tr>
<tr>
<td>" " 11-20, day</td>
<td>15.65</td>
<td>24.94</td>
<td>30.58</td>
<td>7.11</td>
<td>0.06488</td>
<td>6656</td>
<td>1,883</td>
<td>2,361</td>
<td>110</td>
<td>2</td>
</tr>
<tr>
<td>" " night</td>
<td>15.47</td>
<td>25.00</td>
<td>11.70</td>
<td>4.25</td>
<td>0.02894</td>
<td>2534</td>
<td>1,392</td>
<td>653</td>
<td>41</td>
<td>0</td>
</tr>
<tr>
<td>Average</td>
<td>15.56</td>
<td>24.95</td>
<td>21.14</td>
<td>5.68</td>
<td>0.04681</td>
<td>4957</td>
<td>1,638</td>
<td>1,976</td>
<td>76</td>
<td>1</td>
</tr>
<tr>
<td>" 21-31, day</td>
<td>17.48</td>
<td>24.47</td>
<td>24.66</td>
<td>6.22</td>
<td>0.07506</td>
<td>8837</td>
<td>2,890</td>
<td>3,762</td>
<td>323</td>
<td>1</td>
</tr>
<tr>
<td>" " night</td>
<td>17.73</td>
<td>24.55</td>
<td>10.09</td>
<td>4.82</td>
<td>0.02518</td>
<td>2518</td>
<td>1,214</td>
<td>460</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>Average</td>
<td>17.61</td>
<td>24.51</td>
<td>17.38</td>
<td>5.52</td>
<td>0.04268</td>
<td>5678</td>
<td>2,052</td>
<td>2,111</td>
<td>182</td>
<td>1</td>
</tr>
<tr>
<td>June. 1-10, day</td>
<td>19.25</td>
<td>24.66</td>
<td>33.35</td>
<td>7.70</td>
<td>0.09663</td>
<td>10537</td>
<td>3,035</td>
<td>5,894</td>
<td>102</td>
<td>2</td>
</tr>
<tr>
<td>" " night</td>
<td>19.32</td>
<td>24.37</td>
<td>15.76</td>
<td>6.22</td>
<td>0.06213</td>
<td>3543</td>
<td>1,652</td>
<td>1,138</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>Average</td>
<td>19.29</td>
<td>24.26</td>
<td>24.56</td>
<td>6.95</td>
<td>0.07938</td>
<td>7042</td>
<td>2,344</td>
<td>3,516</td>
<td>86</td>
<td>11</td>
</tr>
<tr>
<td>" 11-20, day</td>
<td>20.78</td>
<td>24.13</td>
<td>17.18</td>
<td>5.55</td>
<td>0.05340</td>
<td>8993</td>
<td>3,251</td>
<td>3,936</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>" " night</td>
<td>20.90</td>
<td>24.17</td>
<td>13.17</td>
<td>5.50</td>
<td>0.04519</td>
<td>6555</td>
<td>2,640</td>
<td>2,444</td>
<td>41</td>
<td>10</td>
</tr>
<tr>
<td>Average</td>
<td>21.79</td>
<td>24.10</td>
<td>19.34</td>
<td>6.83</td>
<td>0.06451</td>
<td>8791</td>
<td>2,943</td>
<td>3,215</td>
<td>79</td>
<td>21</td>
</tr>
<tr>
<td>" " night</td>
<td>21.41</td>
<td>24.28</td>
<td>6.96</td>
<td>4.08</td>
<td>0.03983</td>
<td>2958</td>
<td>1,530</td>
<td>550</td>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td>Average</td>
<td>21.60</td>
<td>24.18</td>
<td>13.15</td>
<td>5.46</td>
<td>0.05167</td>
<td>5872</td>
<td>2,273</td>
<td>1,883</td>
<td>64</td>
<td>11</td>
</tr>
<tr>
<td>July. 1-10, day</td>
<td>21.99</td>
<td>22.71</td>
<td>11.69</td>
<td>4.45</td>
<td>0.06405</td>
<td>7150</td>
<td>3,814</td>
<td>1,716</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>" " night</td>
<td>22.75</td>
<td>23.06</td>
<td>10.72</td>
<td>5.41</td>
<td>0.08955</td>
<td>6605</td>
<td>3,700</td>
<td>1,097</td>
<td>126</td>
<td>24</td>
</tr>
<tr>
<td>Average</td>
<td>22.37</td>
<td>22.90</td>
<td>11.21</td>
<td>4.93</td>
<td>0.07700</td>
<td>6680</td>
<td>3,757</td>
<td>1,407</td>
<td>63</td>
<td>13</td>
</tr>
<tr>
<td>" 11-20, day</td>
<td>24.62</td>
<td>24.04</td>
<td>36.52</td>
<td>7.35</td>
<td>0.12225</td>
<td>12259</td>
<td>4,603</td>
<td>4,574</td>
<td>81</td>
<td>23</td>
</tr>
<tr>
<td>" " night</td>
<td>24.53</td>
<td>24.03</td>
<td>35.30</td>
<td>7.61</td>
<td>0.14503</td>
<td>5945</td>
<td>3,059</td>
<td>1,507</td>
<td>99</td>
<td>0</td>
</tr>
<tr>
<td>Average</td>
<td>24.58</td>
<td>24.05</td>
<td>35.91</td>
<td>7.48</td>
<td>0.13364</td>
<td>9202</td>
<td>3,031</td>
<td>3,041</td>
<td>90</td>
<td>12</td>
</tr>
<tr>
<td>" 21-31, day</td>
<td>26.36</td>
<td>24.34</td>
<td>40.89</td>
<td>7.37</td>
<td>0.12276</td>
<td>14492</td>
<td>4,761</td>
<td>6,219</td>
<td>214</td>
<td>24</td>
</tr>
<tr>
<td>" " night</td>
<td>26.58</td>
<td>24.30</td>
<td>33.54</td>
<td>6.45</td>
<td>0.08336</td>
<td>7754</td>
<td>5,358</td>
<td>1,482</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Average</td>
<td>24.72</td>
<td>24.32</td>
<td>37.22</td>
<td>6.91</td>
<td>0.10306</td>
<td>11125</td>
<td>5,060</td>
<td>3,851</td>
<td>108</td>
<td>12</td>
</tr>
<tr>
<td>Aug. 1-10, day</td>
<td>27.44</td>
<td>24.43</td>
<td>20.99</td>
<td>6.08</td>
<td>0.08906</td>
<td>9764</td>
<td>4,237</td>
<td>2,922</td>
<td>235</td>
<td>62</td>
</tr>
<tr>
<td>" " night</td>
<td>27.38</td>
<td>24.63</td>
<td>22.18</td>
<td>6.58</td>
<td>0.10745</td>
<td>4499</td>
<td>3,235</td>
<td>293</td>
<td>153</td>
<td>0</td>
</tr>
<tr>
<td>Average</td>
<td>27.41</td>
<td>24.59</td>
<td>21.59</td>
<td>6.33</td>
<td>0.08927</td>
<td>7134</td>
<td>3,745</td>
<td>1,608</td>
<td>194</td>
<td>31</td>
</tr>
<tr>
<td>" 11-20, day</td>
<td>28.01</td>
<td>24.36</td>
<td>21.57</td>
<td>6.26</td>
<td>0.08209</td>
<td>10109</td>
<td>4,843</td>
<td>3,603</td>
<td>78</td>
<td>32</td>
</tr>
<tr>
<td>" " night</td>
<td>26.20</td>
<td>24.47</td>
<td>7.90</td>
<td>3.85</td>
<td>0.04525</td>
<td>16076</td>
<td>10,578</td>
<td>4,225</td>
<td>0</td>
<td>95</td>
</tr>
<tr>
<td>Average</td>
<td>27.11</td>
<td>24.42</td>
<td>14.74</td>
<td>5.06</td>
<td>0.06367</td>
<td>13075</td>
<td>7,708</td>
<td>3,914</td>
<td>39</td>
<td>64</td>
</tr>
</tbody>
</table>

Table 71.
Plankton

<table>
<thead>
<tr>
<th>Polychaeta</th>
<th>Gasteropoda</th>
<th>Bivalvia</th>
<th>Nectilucua</th>
<th>Penilia</th>
<th>Isopoda</th>
<th>Fish egg</th>
<th>Other zooplankton</th>
<th>A. T. (°C)</th>
<th>Amount of rainfall (mm/day)</th>
<th>Velocity of wind (km/day)</th>
<th>Time of sunshine (hr./day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td>212</td>
<td>104</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>252</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>296</td>
<td>354</td>
<td>18</td>
<td>74</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>190</td>
<td>14.03</td>
<td>2.120</td>
<td>135.00</td>
<td>7.43</td>
</tr>
<tr>
<td>83</td>
<td>62</td>
<td>21</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>190</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>208</td>
<td>20</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>190</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>264</td>
<td>93</td>
<td>55</td>
<td>0</td>
<td>17</td>
<td>17</td>
<td>265</td>
<td>16.24</td>
<td>2.600</td>
<td>170.50</td>
<td>6.07</td>
</tr>
<tr>
<td>114</td>
<td>115</td>
<td>0</td>
<td>53</td>
<td>0</td>
<td>2</td>
<td>19</td>
<td>242</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>200</td>
<td>47</td>
<td>24</td>
<td>0</td>
<td>10</td>
<td>18</td>
<td>254</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>382</td>
<td>419</td>
<td>90</td>
<td>160</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>348</td>
<td>14.94</td>
<td>4.520</td>
<td>136.50</td>
<td>5.03</td>
</tr>
<tr>
<td>80</td>
<td>121</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>2</td>
<td>21</td>
<td>184</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>231</td>
<td>270</td>
<td>55</td>
<td>90</td>
<td>0</td>
<td>2</td>
<td>11</td>
<td>266</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>514</td>
<td>407</td>
<td>167</td>
<td>223</td>
<td>0</td>
<td>34</td>
<td>17</td>
<td>504</td>
<td>18.33</td>
<td>7.160</td>
<td>120.00</td>
<td>3.69</td>
</tr>
<tr>
<td>111</td>
<td>74</td>
<td>91</td>
<td>55</td>
<td>0</td>
<td>9</td>
<td>18</td>
<td>446</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>313</td>
<td>241</td>
<td>129</td>
<td>139</td>
<td>0</td>
<td>22</td>
<td>18</td>
<td>475</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>386</td>
<td>234</td>
<td>62</td>
<td>340</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>292</td>
<td>20.72</td>
<td>7.210</td>
<td>104.50</td>
<td>5.44</td>
</tr>
<tr>
<td>109</td>
<td>86</td>
<td>0</td>
<td>43</td>
<td>0</td>
<td>28</td>
<td>0</td>
<td>417</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>248</td>
<td>160</td>
<td>31</td>
<td>189</td>
<td>0</td>
<td>14</td>
<td>0</td>
<td>443</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>298</td>
<td>199</td>
<td>0</td>
<td>824</td>
<td>0</td>
<td>20</td>
<td>1</td>
<td>404</td>
<td>22.07</td>
<td>4.720</td>
<td>127.00</td>
<td>6.51</td>
</tr>
<tr>
<td>142</td>
<td>100</td>
<td>0</td>
<td>552</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>292</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>150</td>
<td>0</td>
<td>703</td>
<td>0</td>
<td>23</td>
<td>1</td>
<td>332</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>643</td>
<td>421</td>
<td>17</td>
<td>871</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>581</td>
<td>21.69</td>
<td>16.160</td>
<td>147.50</td>
<td>2.94</td>
</tr>
<tr>
<td>99</td>
<td>83</td>
<td>61</td>
<td>290</td>
<td>0</td>
<td>28</td>
<td>0</td>
<td>269</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>371</td>
<td>232</td>
<td>39</td>
<td>581</td>
<td>0</td>
<td>14</td>
<td>0</td>
<td>425</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>784</td>
<td>155</td>
<td>70</td>
<td>320</td>
<td>68</td>
<td>0</td>
<td>0</td>
<td>221</td>
<td>23.19</td>
<td>9.430</td>
<td>115.50</td>
<td>3.38</td>
</tr>
<tr>
<td>315</td>
<td>119</td>
<td>24</td>
<td>403</td>
<td>49</td>
<td>98</td>
<td>0</td>
<td>650</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>550</td>
<td>137</td>
<td>47</td>
<td>362</td>
<td>59</td>
<td>49</td>
<td>0</td>
<td>436</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,389</td>
<td>398</td>
<td>136</td>
<td>335</td>
<td>77</td>
<td>23</td>
<td>0</td>
<td>656</td>
<td>26.85</td>
<td>1.030</td>
<td>122.50</td>
<td>9.84</td>
</tr>
<tr>
<td>216</td>
<td>371</td>
<td>109</td>
<td>123</td>
<td>37</td>
<td>33</td>
<td>0</td>
<td>385</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>801</td>
<td>385</td>
<td>123</td>
<td>216</td>
<td>57</td>
<td>28</td>
<td>0</td>
<td>521</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,765</td>
<td>491</td>
<td>385</td>
<td>140</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>476</td>
<td>27.95</td>
<td>1.118</td>
<td>107.73</td>
<td>9.67</td>
</tr>
<tr>
<td>292</td>
<td>135</td>
<td>39</td>
<td>98</td>
<td>19</td>
<td>36</td>
<td>20</td>
<td>313</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,009</td>
<td>313</td>
<td>212</td>
<td>119</td>
<td>18</td>
<td>18</td>
<td>10</td>
<td>395</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>953</td>
<td>426</td>
<td>622</td>
<td>39</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>267</td>
<td>28.40</td>
<td>0.000</td>
<td>132.00</td>
<td>10.83</td>
</tr>
<tr>
<td>98</td>
<td>98</td>
<td>388</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>208</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>526</td>
<td>262</td>
<td>505</td>
<td>20</td>
<td>4</td>
<td>1</td>
<td>238</td>
<td>192</td>
<td>26.55</td>
<td>2.300</td>
<td>167.50</td>
<td>8.73</td>
</tr>
<tr>
<td>625</td>
<td>273</td>
<td>426</td>
<td>19</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>100</td>
<td>230</td>
<td>100</td>
<td>190</td>
<td>1</td>
<td>0</td>
<td>196</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>463</td>
<td>187</td>
<td>358</td>
<td>60</td>
<td>95</td>
<td>11</td>
<td>0</td>
<td>196</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

潮汐表によって、満潮時ごとに水深1－3 mの岩壁から採水用ゴムホースを投入し（吸水口は留め物の混入防止のため小型バケツに入れ、上部をモシ網で覆った）ピストン・ボンプで揚水した。揚水量の調査は、毎回正確に5分間水槽に採水して計測した。Planktonの採集は、口径20cmの網地XX13を使用した沪過ネットで、揚水した海水を沪過した。また水温および比重は、それぞれ棒状寒暖計、赤藻式比重計で測定した。

(2) 測 定 方 法

採集した Plankton はビーカーに移し、これを Plankton 沈殿管数本に分注した。つぎにビペットでフォルマリン原液を添加して、フォルマリン濃度が10－15%になるようにし、24時間後に Plankton 沈殿量を求めめた。Plankton 沈殿量測定後の試料は水を加えて全体重を100mlとした。これを0.5mlのステッキペル・ビペットで10回採水して Plankton 数を算出した。Plankton 排水量は、計測を終えたものについて上澄液をスポイドで除き、全容量を50mlとした後、定量用紙で沪過した沪液量から求めた。また、灼熱残渣は、Pl-
ankton を通じた一定量用紙を電気炉で灰化し秤量して求めた。灼熱残渣を求める理由は、機能的波による波浪のため土砂の混入が懸念されたからである。
なお、気象条件についての資料は、運輸省松尾漁業所記録を採用したが、同所は尾道市の東方6—7 kmに位置する。

研究結果
第71表は毎日の観測値を10日ごとにまとめ、1,000 lに換算した。たとえば、10日間中日中、夜間別に10回各々100 lずつ採水すると1,000 lであるが、9回または11回観測したばあいでは、合計値を1000 lになるように換算した。

第102図A、Bは海況、気象条件を図示したものである。

Fig. 102. Variations of the average time of sunshine, velocity of wind, amount of rainfall (A), atmospheric temperature, water temperature and specific gravity (B).

海水比重は、7月に極小を示し、2月および5月に1回ずつの極大を示すが、これは降雨量と密接な相関を示し、1955年6月上旬から7月上旬の降雨が7月上、中旬の比較低下を、また1956年6月下旬の降雨が7月上旬の低比重を招来し、1956年2月上旬の乾燥の影響が2月中旬の高さをの原因と推定される。また平均日照時数は6.35であるが、日照時数は降雨量と逆の傾向を示すことは当然で、7月上、中旬には日照時数は少ないが、7月下旬から8月上旬には日照時数は、時間で最高を示し、比重増加の原因となっている。第103図(A)は、灼熱残渣および Plankton 沈殿量、排水量を示す。

灼熱残渣は、波浪による浮泥の混入量を知るのがおもな目的であったが、1955年5—7月を除くと、1,000 l当たり0.19 前後を示し、日中は夜間より幾分大きい。Plankton 沈殿量は、7月中、下旬と12月上旬から翌年2月中旬に極大に達するが、後者のは異常な沈殿量は、採水地付近に排出されたみかん加工工場の排
Fig. 103. Variations of the average settling volume, displaced volume and ignition residuum of plankton converted into the volume per 1,000 liters.

水の影響によるものである。また金屬的な昼間は夜間より大きく、特に3—6月ではこの傾向が強く、灼熱現象でも同様な傾向を認めることから判断すると、昼間が夜間よりも船舶の波浪による影響を強く受けるためと思われる。12月上旬から翌年の2月中旬までを除いて、夜間だけの沈澱量について季節変動をみると、7月下旬、9月中旬、10月下旬、翌年4月上旬。7月中旬に極大を示すが、第102図(A)の降雨量と比較すると、降雨量は、6月上旬から7月上旬、8月上旬から10月上旬、3月中旬、5月下旬から7月中旬に極大値がみられ、沈澱量の極大値は、降雨の多かった月から1月〜2月後に生起することがわかる。

Plankton 水量は、1,000 l 当たり 5—10mm で、沈澱量と比較すると変動は小さいが、Plankton 沈澱量のばらつきは同様、昼間の水量は夜間の水量よりも大きい。

第104図(A) (B) (C) は、動物性 Plankton の総数ならびに種類別の季節変動を図示したものである。

動物性 Plankton 総数についてみると、昼間と夜間で個体数は異なり、10月中旬から翌年1月上旬ごろまでには夜間が多く、それ以外では昼間の採集個体数が多い。また季節的には、6月または7月から12月までに多く、1月から5月までは少ない。動物性 Plankton の大部分は、Copepoda と nauplius である。これらの個体数は10月から12月までは夜間の出現数が多いが、その他の月では昼間の個体数が多い。また、これらの季節的変動はわかるべく大きく、Copepoda では10月から12月に極大値を示し、3月から6月に極小値を示すが、他方 nauplius では9月から11月、3月から7月の2回極大値を示し、1月から2月に極小値を示す。Noctiluca scintillans (Macartney) は、しばしば爆発的に増加し、いわゆる赤潮となって大被害を与えることが知られているが、本調査結果は1,000 l 当たり200匹前後で、1955年10月下旬に7,000匹の種を

— 153 —
Fig. 104. (A—C). Variations of the number of zooplankton, (A), total number and Bivalvia; (B), Copepoda, nauplius and Noctiluca; (C), Polychaeta and Gastropoda.
示し、3月から5月には極小値を示した。Polychaeta および Gastropoda はきわめてよく似た変動を示し、5月から8月に極大を示し次第に減少して1月から3月に極小となる。Polychaeta は、全般的に昼間であるが、10月から翌年2月の期間は、昼夜の採集数を相殺する。また1月から6月までは昼間近く、9月から12月は夜間に多く採集された。Bivalvia は、8月上旬と10月中、下旬の2回に極大を示し、4月から6月に極小を示す。

つぎに降雨量と Plankton との関係をみると、動物性 Plankton 数と降雨量（第105図）：Copepoda, nauplius の個体数と降雨量（第106図）との間には相関は認められない。このことは、Plankton 量が降雨のあった日から1旬近く遅れて増加することを考えあわせるとむしろ当然であろう。したがって、これらの取り扱いについては、さらに検討が必要である。

第15節 日週期活動

イカナナ漁業は、夜間集魚時によって集魚し、拖網、播餌網によって採捕するものと、昼間遊泳中のものを袋詰め、地引き網、バッチ網などで採捕するものとに分けられる。イカナナの日週期活動を知るためには、これらの漁業の理学の実態を把握する必要があると思われる。

イカナナ漁業者の聞き取り調査を総合すると、イカナナの日週期活動は次のように要約される。

1. コナと称する稚魚時代は、潮汐にしたがって遊泳する。
2. 潮に集まるのは、5月上旬（八十八夜）までである。
3. 八十八夜以後は浅潮に潜入する。
4. 浅潮に浮かぶイカナナは、潮汐2回遊泳することが、ところによっては潮を海人いため、潮の緩慢な時期に遊泳する。
5. 8, 9月は全く遊泳できない。
6. 10月以後ふたび浅潮の生息地で、4に述べたような行動をする。
7. 12月下旬の産卵期のイカナナは、深所へ移動する。

筆者らは、イカナナ稚魚および産卵期のイカナナを室内飼育して日週期活動を観察した。なお千田（1965）は、産卵を終えた親魚が夜間、表層を遊泳することを報告した。

実験方法

（1）1954年4月29日から5月24日まで、ガラス水槽6個を使用してイカナナの海水中における抵抗力を測定した際の観察資料（II）1954年4月29日から8月6日まで、イカナナ63尾を径40cm、高さ75cm、高さ45cmのガラス水槽（約5cmの厚さに砂と海水100ℓを入れた）に入れて観察した資料および（III）1954年12月4日から

--- 156 ---
翌年1月29日まで産卵期調査を行なった時の観察資料にもとづいて、日週期活動を推定した。

（Ⅰ）の資料は、午前5時から午後10時まで随時観測したので、観測時刻を2～6，6～10，10～14，14～18，18～22時に区分した。これらの各時間内に観測したイカナゴの状態を遊泳と頭部露出とに分け、その最も高い個体数を各時間区分の遊泳数、頭部露出数とし、毎日の記録を集計して平均した。（II）の資料は、放養尾数が多数で計測が困難であったので、ここには遊泳数のみを用いることとした。（III）の資料は、毎日2時、6時、10時、14時、18時、22時の4回記録したので、各時ごとに時間別に集計した。第107図は、実験方法（Ⅰ）の資料を集めしたものです。6時10時2時10時14時18時が最大多くみられるので、各時間区分内の1日当たりの平均数を求めて図示した。

Fig. 107. Variations of the average number of swimming and head protruding specimens. Solid circles, swimming specimens; crosses, head protruding specimens.

各水槽はガラス製10リットルのもので、海水4リットル、砂3.0～5.9リットル、塩素量（%）(1)9.89，(2)6.51，(3)17.89，(4)18.88，(5)20.67，(6)22.19で(6)が最も高かく(1)が最も低かった。第107図(1)～(6)からイカナゴの遊泳数は、2～6時が最も大きく6時以後減少するが、18～22時になくなって増加する。また砂中からの頭部露出数は、18～22時が最も多く、2～6時が最も小さい。第72表は、日週期活動を調査する目的で飼育観察を行なった実験（II）の結果である。放養尾数が多かったため、遊泳数の計測は正確とはいえ難い。

放養後5月10日までは無給餌で、5月10日から7月22日までは毎日採集したPlanktonを大量に給餌した。また4月22日以降は、第72表にみるように、7月22日に水温の上昇によると思われる死魚が出現したので、それ以後の給餌は中止した。

第2表を無給餌の5月10日までとそれ以降とに分けて考察する。5月1日から同月10日までの無給餌期間では、イカナゴの遊泳は5～6時に最も盛んにみられる。5月10日以降では、給餌による捕食活動が活発に

157
Table 72. The results observed on the behavior of food supplied: X, water

<table>
<thead>
<tr>
<th>Date</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>May</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>6</td>
<td></td>
<td></td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>June</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Remarks: P, food supplied; X, water
experiment of swimming periodicity of sand-lance.

Numbers in each columns show the numbers of swimming fish.

<table>
<thead>
<tr>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>Mortality</th>
<th>Range of water temp. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>9</td>
<td>12</td>
<td>17</td>
<td>15</td>
<td>15</td>
<td>18</td>
<td>21</td>
<td>30P</td>
<td>30P</td>
<td>1/49</td>
<td>15.4~19.0</td>
</tr>
<tr>
<td>30P</td>
<td>30P</td>
<td>5</td>
<td>23</td>
<td>14</td>
<td>15</td>
<td>18</td>
<td>21</td>
<td>30P</td>
<td>30P</td>
<td>1/47</td>
<td>18.1~19.4</td>
</tr>
<tr>
<td>18P</td>
<td>12</td>
<td>18</td>
<td>21</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>18P</td>
<td>18P</td>
<td>1/48</td>
<td>18.6~19.5</td>
</tr>
<tr>
<td>18</td>
<td>12</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>23</td>
<td>22</td>
<td>22</td>
<td>1/49</td>
<td>17.7~19.1</td>
</tr>
<tr>
<td>18</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>1/48</td>
<td>16.8~19.8</td>
</tr>
<tr>
<td>18</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>1/48</td>
<td>18.6~19.5</td>
</tr>
<tr>
<td>18</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>1/48</td>
<td>16.8~19.8</td>
</tr>
<tr>
<td>18</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>1/48</td>
<td>18.6~19.5</td>
</tr>
<tr>
<td>18</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>1/48</td>
<td>16.8~19.8</td>
</tr>
<tr>
<td>18</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>1/48</td>
<td>18.6~19.5</td>
</tr>
<tr>
<td>18</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>1/48</td>
<td>16.8~19.8</td>
</tr>
<tr>
<td>18</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>1/48</td>
<td>18.6~19.5</td>
</tr>
<tr>
<td>18</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>1/48</td>
<td>16.8~19.8</td>
</tr>
<tr>
<td>18</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>1/48</td>
<td>18.6~19.5</td>
</tr>
<tr>
<td>18</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>1/48</td>
<td>18.6~19.5</td>
</tr>
<tr>
<td>18</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>1/48</td>
<td>18.6~19.5</td>
</tr>
<tr>
<td>18</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>1/48</td>
<td>18.6~19.5</td>
</tr>
<tr>
<td>18</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>1/48</td>
<td>18.6~19.5</td>
</tr>
<tr>
<td>18</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>1/48</td>
<td>18.6~19.5</td>
</tr>
<tr>
<td>18</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>1/48</td>
<td>18.6~19.5</td>
</tr>
<tr>
<td>18</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>1/48</td>
<td>18.6~19.5</td>
</tr>
<tr>
<td>18</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>1/48</td>
<td>18.6~19.5</td>
</tr>
<tr>
<td>18</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>1/48</td>
<td>18.6~19.5</td>
</tr>
<tr>
<td>18</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>1/48</td>
<td>18.6~19.5</td>
</tr>
<tr>
<td>18</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>1/48</td>
<td>18.6~19.5</td>
</tr>
<tr>
<td>18</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>1/48</td>
<td>18.6~19.5</td>
</tr>
</tbody>
</table>
行なわれ、5～6時と給餌後数時間との2回に遊泳がみられ、夜間の遊泳はみられなかった。7月後半以後では、水温の上昇に伴い遊泳活動は不活発となり、特に7月20～28日では、供試魚の大半が死亡した。

尾道付近のイカナゴ漁業者は、5月以後のイカナゴは、潮流の停滞時に摂餌のために遊泳し、上手の州から下手の州へ移動するといいが、このことは昼間の摂餌行動からも理解される。なお使用したイカナゴは体長4.21～8.56cm、体重0.24～1.86g、肥満度1.45～3.73であった。
<table>
<thead>
<tr>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>Mortality</th>
<th>Range of water temp. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>×</td>
<td>14P</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>1/32</td>
<td>20.4~22.0</td>
</tr>
<tr>
<td>×</td>
<td>7</td>
<td>P</td>
<td>26</td>
<td>4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>1/42</td>
<td>20.2~21.4</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>X</td>
<td>2P</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>1/41</td>
<td>19.5~21.5</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>1P</td>
<td>X</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>20.6~21.6</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>2</td>
<td>11</td>
<td>---</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>20.8~22.2</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>7</td>
<td>2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>20.3~22.0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>---</td>
<td>5</td>
<td>P</td>
<td>20</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>21.3~22.8</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>14</td>
<td>---</td>
<td>3</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>21.6~22.6</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>X</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>3/37</td>
<td>21.6~22.8</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>9P</td>
<td>6P</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>22.6~23.2</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>2</td>
<td>X</td>
<td>7P</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>21.5~23.3</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>21.5~23.6</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>1</td>
<td>---</td>
<td>3</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>22.3~24.3</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>3</td>
<td>---</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>22.3~24.3</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>1</td>
<td>---</td>
<td>P</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>22.3~24.3</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>22.3~24.3</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>22.3~24.3</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>22.3~24.3</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>1</td>
<td>---</td>
<td>P</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>22.3~24.3</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>1</td>
<td>---</td>
<td>P</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>22.3~24.3</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>P</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>22.3~24.3</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>22.3~24.3</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>22.3~24.3</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>22.3~24.3</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>22.3~24.3</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>22.3~24.3</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>22.3~24.3</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>22.3~24.3</td>
<td></td>
</tr>
</tbody>
</table>

第108図(1)~(7)は温室維育の結果で、縦軸は観察期間中の合計尾数を示す。実験IIでは、各槽は水温を調節して計測の変化を調べたもので、水体No. 5, 6, 7は、観察数が多数字で計測結果のみ計測した。
これによると、イカナゴの遊泳数は6時ごろが最も多く、ついで18時と22時が多く、また遊泳数は、2時ごろが最も多く、18時~23時がこれにつづく。
(1) (2) (3)の各観察を通じて、イカナゴの日周期活動を推定すれば、遊泳は早朝と夕朝時（発業

--- 161 ---
者のいう潮流停止時）に多く、日中は全般的に少ない。夜間は、砂中から頭部を露出し、遊泳数は少ない。
つぎに砂中から遊泳する時間的の変化を、実験IIについて5月9日および5月17日の2回観察した。第
109図はその結果を示したもので(A)は早朝の遊泳数、(B)は11時10分・給餌時の遊泳状況を示す。資料はわず
か2例に過ぎないが、最大の遊泳数は遊泳開始後約20分にみられた。

Fig. 108. Variations of the average number of swimming and head protruding specimens.
Solid circles, swimming specimens; crosses, head protruding specimens.

以上の観察結果を漁業者の聞き取りと比較すると、(1)早朝の遊泳数が多く、夕方ふたび増加する傾向が
あること、(2)潮流の停滞期に頭部のために遊泳することなどは、よく一致するようである。

第16節 底 質 選 擇 性
イカナゴ成魚は、砂中に潜入することは一般に知られており、その潜入場所はいずれも砂質で州と呼ばれ
るところである。また兵庫県沿岸市では、地の地の沿岸にしゅろを使用して好結果を得たため、その後沿
岸はもっぱらしゅろがかったということであった。このように、イカナゴは砂質および色に対して反応を
示すことが推定されるため、砂粒子と砂質調に対する選挙性について検討した。

研究方法
木製円形水槽（四半径）の底部を高さ12cmの板で4等分し、各区別の中央部にガラス管を通して、板の高

— 162 —
さと同長にして排水口を設けた。つぎに第73表に示す砂を1区分2.5ℓずつ入れ、海水を区画板から32cmの深さまで満たし、水槽の中央部へ1日659〜706ℓの割合で海水を落下させ、同時にニューポンプにより空気を吹き込んだ。施設したイカナゴは自由に水槽の中を遊泳できるようにし、放養後約4日目ごとに海水を排出して、各区分ごとに砂中に潜入したイカナゴ数を計測し、各区分内の潜入数の大小から選択性の判定を行なった。

研究結果

第73表は実験に使用した砂の粒子組成を示す。第74表は、飼育期間と飼育水温ならびに各実験ごとの順位とイカナゴ潜入数、第74表は供試魚の体長組成を示す。

Table 73. Composition of the bed grains.
(Numerals within parenthesis represent shell percentage.)

<table>
<thead>
<tr>
<th>Size of sand (mesh)</th>
<th>8</th>
<th>8〜20</th>
<th>20〜32</th>
<th>32＜</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tachibana</td>
<td>3.36(71.64)</td>
<td>58.76(47.25)</td>
<td>21.38(11.15)</td>
<td>16.51(4.75)</td>
<td>100(33.34)</td>
</tr>
<tr>
<td>Todai</td>
<td>4.38(78.40)</td>
<td>20.86(36.10)</td>
<td>36.28(49.25)</td>
<td>38.49(7.75)</td>
<td>100(42.24)</td>
</tr>
<tr>
<td>Nakaze</td>
<td>2.91(70.19)</td>
<td>34.26(86.65)</td>
<td>30.56(19.20)</td>
<td>32.27(2.10)</td>
<td>100(39.30)</td>
</tr>
<tr>
<td>Miyanoshita</td>
<td>14.64(45.05)</td>
<td>58.02(43.90)</td>
<td>19.50(15.45)</td>
<td>7.84(5.10)</td>
<td>100(35.48)</td>
</tr>
<tr>
<td>River sand</td>
<td>2.41(1.18)</td>
<td>48.96(0)</td>
<td>24.13(0)</td>
<td>25.29(0)</td>
<td>100(0.028)</td>
</tr>
<tr>
<td>Mingled sand</td>
<td>3.33(38.52)</td>
<td>36.25(28.35)</td>
<td>34.84(5.75)</td>
<td>25.57(1.50)</td>
<td>100(13.95)</td>
</tr>
<tr>
<td>Sand</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>A</td>
<td>100(66.10)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>B</td>
<td>100(54.65)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>C</td>
<td>100(27.50)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>D</td>
<td>100(9.75)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Artificially colored sand</td>
<td>—</td>
<td>100(50.60)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>E</td>
<td>27.11(74.49)</td>
<td>27.84(52.55)</td>
<td>45.05(69.82)</td>
<td>100(66.28)</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>32.09(43.40)</td>
<td>28.84(25.35)</td>
<td>39.07(50.55)</td>
<td>100(40.99)</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>31.85(20.40)</td>
<td>34.55(10.40)</td>
<td>33.59(25.15)</td>
<td>100(18.54)</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>49.34(74.49)</td>
<td>50.66(52.55)</td>
<td>—</td>
<td>100(63.38)</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>52.67(43.40)</td>
<td>47.33(25.35)</td>
<td>—</td>
<td>100(34.86)</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>47.96(20.40)</td>
<td>52.04(10.40)</td>
<td>—</td>
<td>100(15.20)</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>—</td>
<td>—</td>
<td>100(45.60)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>L</td>
<td>100(78.5)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>M</td>
<td>100(56.0)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>N</td>
<td>100(32.0)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>O</td>
<td>100(0)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>P</td>
<td>100(17.05)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Q</td>
<td>100(6.65)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>R</td>
<td>—</td>
<td>—</td>
<td>100(14.57)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>S</td>
<td>—</td>
<td>—</td>
<td>100(15.75)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>T</td>
<td>—</td>
<td>—</td>
<td>100(4.70)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>U</td>
<td>—</td>
<td>—</td>
<td>100(0.25)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>V</td>
<td>—</td>
<td>—</td>
<td>100(12.40)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>W</td>
<td>—</td>
<td>—</td>
<td>100(18.96)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>X</td>
<td>—</td>
<td>—</td>
<td>100(8.23)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Y</td>
<td>—</td>
<td>—</td>
<td>100(1.06)</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Table 74. Experimental results regarding the bottom sand selection of sand-lance.

<table>
<thead>
<tr>
<th>No.</th>
<th>Period of culture</th>
<th>W. T. (°C)</th>
<th>Order.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>Apr. 25~Apr. 30</td>
<td>11.4~18.6</td>
<td>Tachibana</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>Apr. 30~May</td>
<td>12.8~17.6</td>
<td>"</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>May 4~May</td>
<td>8.3~15.8</td>
<td>"</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>May 8~May</td>
<td>13.5~18.1</td>
<td>Nakaze</td>
<td>34</td>
</tr>
<tr>
<td>5</td>
<td>May 12~May</td>
<td>16.3~16.7</td>
<td>"</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>May 16~May</td>
<td>13.5~19.1</td>
<td>C</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>May 21~May</td>
<td>17.4~19.4</td>
<td>White</td>
<td>29</td>
</tr>
<tr>
<td>8</td>
<td>May 22~May</td>
<td>16.9~19.8</td>
<td>Nakaze</td>
<td>22</td>
</tr>
<tr>
<td>9</td>
<td>May 26~May</td>
<td>30.15~19.5</td>
<td>G</td>
<td>22</td>
</tr>
<tr>
<td>10</td>
<td>May 30~June</td>
<td>21.7~19.4</td>
<td>White</td>
<td>18</td>
</tr>
<tr>
<td>11</td>
<td>June 2~June</td>
<td>18.3~23.0</td>
<td>I</td>
<td>26</td>
</tr>
<tr>
<td>12</td>
<td>June 7~June</td>
<td>17.7~22.0</td>
<td>H</td>
<td>27</td>
</tr>
<tr>
<td>13</td>
<td>June 12~June</td>
<td>19.3~21.9</td>
<td>White</td>
<td>21</td>
</tr>
<tr>
<td>14</td>
<td>June 15~June</td>
<td>20.19~24.1</td>
<td>N</td>
<td>21</td>
</tr>
<tr>
<td>15</td>
<td>June 22~June</td>
<td>26.18~22.9</td>
<td>N</td>
<td>56</td>
</tr>
<tr>
<td>16</td>
<td>June 26~June</td>
<td>30.19~22.4</td>
<td>S</td>
<td>42</td>
</tr>
<tr>
<td>17</td>
<td>June 30~July</td>
<td>22.1~22.6</td>
<td>X</td>
<td>47</td>
</tr>
<tr>
<td>18</td>
<td>July 2~July</td>
<td>6.18~23.1</td>
<td>Y</td>
<td>47</td>
</tr>
<tr>
<td>19</td>
<td>July 6~July</td>
<td>9.21~25.2</td>
<td>N</td>
<td>46</td>
</tr>
<tr>
<td>20</td>
<td>July 9~July</td>
<td>12.21~25.6</td>
<td>N</td>
<td>52</td>
</tr>
<tr>
<td>21</td>
<td>July 12~July</td>
<td>16.22~27.3</td>
<td>N</td>
<td>49</td>
</tr>
<tr>
<td>22</td>
<td>July 16~July</td>
<td>22.0~26.9</td>
<td>N</td>
<td>40</td>
</tr>
<tr>
<td>23</td>
<td>July 19~July</td>
<td>23.18~27.3</td>
<td>N</td>
<td>48</td>
</tr>
<tr>
<td>24</td>
<td>July 23~July</td>
<td>27.24~27.3</td>
<td>N</td>
<td>41</td>
</tr>
<tr>
<td>25</td>
<td>July 27~July</td>
<td>31.22~27.9</td>
<td>N</td>
<td>38</td>
</tr>
<tr>
<td>26</td>
<td>July 31~Aug.</td>
<td>4.20.8~28.8</td>
<td>S</td>
<td>21</td>
</tr>
</tbody>
</table>

Table 75. Composition of the body length (in cm) of specimens employed for investigation of sand selection.

<table>
<thead>
<tr>
<th>Fishing ground</th>
<th>Period of experiment</th>
<th>5.0~5.2</th>
<th>5.2~5.4</th>
<th>5.4~5.6</th>
<th>5.6~5.8</th>
<th>5.8~6.0</th>
<th>6.0~6.2</th>
<th>6.2~6.4</th>
<th>6.4~6.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nakaze</td>
<td>Apr. 25~June 6</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>13</td>
<td>16</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>Setoda</td>
<td>June 7~June 20</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Köne</td>
<td>June 20~Aug. 4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1</td>
<td>3</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

第74表に示す実験1～4からみると、海砂は立花漁場の堆積層が最も良好で、宮ノ下海砂または河砂が最も堆積層が悪いことがわかる。宮ノ下海砂は、8 mesh以上の砂粒子が多く、河砂と混合砂は具類の含有率が

—164—
低く、ともに砂質は重い。
実験5、8は、同じ砂を使用した便所のイカネズミ分散数を検討したもので、5では14～24尾、8では9～22尾と両者ともかなり幅の広い変異を示した。
実験6は、海砂を粒子の大きさ別に試験したので、8mesh以下のB、C、Dではほんとで差がみられ
ないが、最も粒子の大きいAは摂食数が少ない。実験9は、海砂にカキ殻を混合し、具殻混合率の影響をし
らべたもので、E、F、Gの間に差は認め難しい。実験11、12は、E、F、Dの資料から32mesh以下を分離し
たものKと、33mesh以上のものを比較したもので、イカネズミ摂食数はKが少ない。実験14、15は、8～
20meshの砂壌に海砂中から選別した具殻を破砕して混合したL、M、N、O、P、Qの試料について調査
したので、Nが最もイカネズミの摂食数が多いが、具殻混合率6.65～32.0%のN、P、Qではほとんど差が
ない。実験16は、20～32meshの砂粒子について、具殻摂食率の影響をしらべたもので、R、S、T、Uの
間で差は認められなかった。V、W、X、Yは、32mesh以下の粒子について、具殻摂食率の影響を見るた
めに作ったもので、実験17、18が示すように具殻摂食の影響は、Wに最もみられたようである。実験19、
20、21、22、23、24、25は、大きさの粒子の組合せによって、粒子の選択性について再検し実験した。
この結果によると、イカネズミの摂食数は、Nの組成が常に1位を占め、粒子の最も小さいX、Wが小さいこ
とを示した。なお実験22以後は、水温上昇により死魚がみられた。
つぎにイカネズミの色に対する選択性をみるために、8～20meshの海砂2.5gに、各種のユリメタル63.3g
を農薬油350mlに溶かしたものを混合して着色し、十分乾燥した後、数日間海水に浸して洗い出した。
第1回目の実験を5月21日に行なったが、脱色と臭気を認めめた。その後これらの影響を除去するため5月30
日まで洗浄を繰返したのち第2、3回の実験を行なった。さらに6月12日まで洗浄がなされ、脱色と
臭気は防止できなかった。実験7、10、13は、着色した砂粒子に対するイカネズミの選択性を検査した結果
で、いずれの便所においてもイカネズミの摂食数は、白色が最も多く、黒色がこれに次ぐ結果を示した。

第17節 砂中潜入速度
イカネズミの成魚が砂中に潜入することは常識で、Meek、A.（1916）もA. tobianusについて観察して
いる。さらに、イカネズミ成魚の日周期活動について述べ、イカネズミの遊泳は、早い朝と湖沼の緩漫時に盛ん
で、その他の時期は砂中に全く潜入するか、頭部を砂中に押し出し、敵の襲来から身を守ることを知った。
しかしながらイカネズミを発見するにあたり、遊泳中魚がどの位の深さで潜入するかは、漁獲能率に影響を与
えるものと思われる。そこで深さ25cm、内径38cmの竹かごに砂を入れ、海の表面より下げてからこれにイ
カネズミを収容し、30分後にイカネズミの砂中潜入状況をしらべた。

調査結果
第76表は、1964年4月24日、27日に行なった調査結果を示す。

<table>
<thead>
<tr>
<th>Date</th>
<th>No.</th>
<th>W. T. (°C)</th>
<th>Vol. of sand (ft</th>
<th>Time</th>
<th>No. of specimens burrowing into sand</th>
<th>Weather</th>
<th>Cloud</th>
<th>Winds Vel.</th>
<th>Dir.</th>
<th>Waves (m)</th>
<th>Transparency (im)</th>
<th>A. T. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr. 24</td>
<td>110</td>
<td>15.2</td>
<td>2.5</td>
<td>13:30–14:00</td>
<td>11(10.00%)</td>
<td>c</td>
<td>9</td>
<td>1 SE</td>
<td></td>
<td>7.8</td>
<td>14.2</td>
<td>14.4</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Apr. 27</td>
<td>92</td>
<td>14.5</td>
<td>2.5</td>
<td>13:47–14:07</td>
<td>70(76.09%)</td>
<td>o</td>
<td>10</td>
<td>0</td>
<td></td>
<td>9.0</td>
<td>14.5</td>
<td>14.4</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

すなわち第1回目の実験では、放濁30分後の潜入率は0～10％で、第2回目の実験では、76～88％の潜入
率を示した。この両実験における潜入率の差は供試魚の活性によるもので、第1回目の実験では、供試魚の

— 165 —
Table 77. Experimental results of the variation of body colour caused by various
colour light obtained through colour filters and climate, sea conditions
at the investigation day.

(1) List of observations carried out.

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Weather</th>
<th>Cloud</th>
<th>Velocity of wind</th>
<th>Direction of wind</th>
<th>Wave</th>
<th>Tra. (m)</th>
<th>Sp.</th>
<th>Water colour</th>
<th>PH</th>
<th>W. T. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1954</td>
<td>Apr. 23</td>
<td>11 20</td>
<td>1</td>
<td>—</td>
<td>SW</td>
<td>0</td>
<td>7.0</td>
<td>23.94</td>
<td>6</td>
<td>8.3</td>
<td>13.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14 54</td>
<td>9</td>
<td>—</td>
<td>SE</td>
<td>0</td>
<td>7.8</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>14.2</td>
</tr>
</tbody>
</table>

(2) Experimental results.

<table>
<thead>
<tr>
<th>No.</th>
<th>Colour</th>
<th>No. of specimens (°C)</th>
<th>SP. (°C)</th>
<th>W. T.</th>
<th>Blue→Reddish yellow</th>
<th>Reddish yellow→Blue (Sec)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(min sec) min sec</td>
<td>(min sec) min sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.00</td>
<td>6.30</td>
<td>7.30</td>
</tr>
<tr>
<td>1</td>
<td>Red</td>
<td>20</td>
<td>23.94</td>
<td>13.8~18.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Yellow</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Black</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Blue</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Violet</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>Red</td>
<td>14</td>
<td>—</td>
<td>13.8~18.5</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Yellow</td>
<td>16</td>
<td>—</td>
<td>20.2</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Black</td>
<td>14</td>
<td>16.4</td>
<td>+ 7</td>
<td>+ 7</td>
<td>+ 7</td>
<td>+11</td>
</tr>
<tr>
<td></td>
<td>Blue</td>
<td>16</td>
<td>19.5</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>14</td>
<td>20.2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Violet</td>
<td>16</td>
<td>20.6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>Red</td>
<td>13</td>
<td>—</td>
<td>13.8~19.2</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Yellow</td>
<td>22</td>
<td>—</td>
<td>21.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Black</td>
<td>9</td>
<td>16.8</td>
<td>+ 8</td>
<td>+ 7</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Blue</td>
<td>16</td>
<td>20.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>12</td>
<td>19.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Violet</td>
<td>20</td>
<td>21.2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>Black</td>
<td>9</td>
<td>—</td>
<td>17.6</td>
<td>+ 6</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>18.6</td>
<td>+ 8</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>Black</td>
<td>20</td>
<td>—</td>
<td>15.8</td>
<td>+10</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>16.1</td>
<td>—</td>
<td>+17</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>14.7</td>
<td>+ 4</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>15.2</td>
<td>—</td>
<td>+17</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>15.0</td>
<td>+18</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>15.6</td>
<td>—</td>
<td>+19</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>+ 6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
第18節 体色変化

魚類の体色変化は、眼に受けた刺激が神経経路を通じて色素細胞内の色素粒の集散をうながすことによるものとされ、魚種によって環境の色彩に反応する時間が異なる（末広，1951）。

イカナゴの体色は、側面は銀白色を呈し変化しないが、背面は青緑色または青緑色で環境によって変化する。このことは、死者にしても容易に観察されるところである。漁獲直後のイカナゴを層疊にしてしばらく放置すると、表面のイカナゴは青緑色、中層以下はあめ色に変色する。また1部の漁業者は、漁場で漁獲されるイカナゴの体色によって、その日の漁獲の良否がわかるとし、その理由としてあめ色のイカナゴが漁獲されるということ、大部分のものが砂中に埋没しているので不漁であるという。われわれは、1954年4月、イカナゴ漁場において漁獲直後のものについて体色の変化を検討した。

実験方法
(1) 船に直径29cm、高さ17cmの円形ガラス水槽を6個用意し、各水槽に海水3lを入れた。これに漁獲後のイカナゴを放養し、ずぶやかに着色セロファンでガラス水槽を包み、体色の変化を観察する時間を見定めた。
(2) 竹かごにイカナゴを入れ、船から沈下させたあいの体色の変化および竹かごを着色セロファンで包み、海の表面に下げるあいの変化について検討した。

実験結果
第77表は、(1)の方法で行なった実験結果を示したもので、第1回の実験では、どの色にも反応を示さなかった。その原因として砂を0.5つずつ入れたためと考えられたので、第2回目の実験以後砂を除いた。第2、3回の実験からイカナゴ体色の変化は、陰暗によって起こることを示し、第4、5回の実験では、2分間で一部は青緑色からあめ色に変色した。またあめ色から青緑色に変化するのに、わずか20秒を要したものをみられた。

Table 78. Experimental results of the change of body colour in bamboo cages hang in the sea from a boat with or without coloured cellophane cover and climate, sea condition at the investigation day.

(1) List of observation carried out.

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Weather</th>
<th>Cloud</th>
<th>Velocity of wind</th>
<th>Direction of wind</th>
<th>Wave</th>
<th>Tra. (m)</th>
<th>W. T. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1954 Apr. 24</td>
<td>11hr 04min</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>8.0</td>
<td>14.1</td>
<td></td>
</tr>
</tbody>
</table>

(2) Experimental results.

<table>
<thead>
<tr>
<th>No.</th>
<th>Items</th>
<th>No. of specimens</th>
<th>W. T. (°C)</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Depth (m)</td>
<td>Many</td>
<td>14.1</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>4.4</td>
<td></td>
<td></td>
<td>5.00</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>Colour</td>
<td>110</td>
<td>15.0~15.2</td>
<td>5.00</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Yellow</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Black</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Blue</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Violet</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Black</td>
<td>Many.</td>
<td>---</td>
<td>2.00</td>
</tr>
</tbody>
</table>

--- 167 ---
第78表は実験方法（Ⅱ）の結果で、漁獲イカナゴを無色の透明セロファンでおおったまま1.5〜4.4m沈下した結果、表面の魚は変化しないが、それ以外は全部青色に変化する。また表層に垂下した第2、3回目の実験では、実験方法（Ⅰ）のばあいと同様、黑色セロファンでおおった時に体色の変化がみられた。

以上の実験を要約すると、イカナゴの体色は容易に変化し、あめ色から青緑色に変化するのに20秒を要しない。

第19節 夏眠

従来イカナゴは、水温の上昇につれて砂中に潜入すると信じられてはいたが（佐賀県水産試験場1948〜1950），8月に採集された記録はない。筆者らは、マンガ漁法による採集を計画第110図に示す採集具を試作し、イカナゴの採捕を試みた。

Fig. 110. Structure of the apparatus designed to collect aestivated sand-lance.

採集方法

採集具を船尾から海底に沈下し、船を微速で進行させながらロープを加減して砂が採集網に入ることをできるだけ防ぐ。袋部に砂がかかり入った頃を見計らって船の進行を止め、採集器を船上に引き上げて砂中のイカナゴを採集した。採集した漁場は第111図に示す通りで、主として細島〜因島間、立花南部海底で、調査日は1954年8月4日および8月10日の2回である。

— 168 —
採集結果

採集魚は第79表に示す通り83尾で、底層水温は23.9〜25.0°Cであった。またイカナゴを多数採集できた地点は細島周辺で底質は貝殻を重ねた白色粘砂である。

Table 79. Number of the sand-lance collected in summer, 1954.

<table>
<thead>
<tr>
<th>Date</th>
<th>Investigated place</th>
<th>Depth(m)</th>
<th>Bottom W. T. (°C)</th>
<th>Colour of sand</th>
<th>No. of sand-lance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug. 4</td>
<td>Hoso Shima</td>
<td>9</td>
<td>24.3〜24.5</td>
<td>White shell mingled sand</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>23.9</td>
<td>Dark whit fine sand</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Iwasho Shima</td>
<td>20</td>
<td>—</td>
<td>Gray coarse sand</td>
<td>0</td>
</tr>
<tr>
<td>Aug. 10</td>
<td>Hoso Shima</td>
<td>8</td>
<td>24.8〜25.0</td>
<td>White shell mingled sand</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Tachibana</td>
<td>14</td>
<td>25.0</td>
<td>Dark gray sand</td>
<td>2</td>
</tr>
</tbody>
</table>

第80表は、イカナゴ調査地点の泥粒組成を示す。

Table 80. Grain composition of the sea-bed inhabited by sand-lance.

<table>
<thead>
<tr>
<th>Mesh</th>
<th>Tachibana</th>
<th>Sasa-shima</th>
<th>Nakaze</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1(Sand-lance) 0</td>
<td>2(Sand-lance) 0</td>
<td>3(Sand-lance) 0</td>
</tr>
<tr>
<td>20</td>
<td>96.478</td>
<td>62.14</td>
<td>141.781</td>
</tr>
<tr>
<td>Residue</td>
<td>6.300</td>
<td>4.05</td>
<td>10.562</td>
</tr>
<tr>
<td>Shell</td>
<td>26.60</td>
<td>14.60</td>
<td>—</td>
</tr>
</tbody>
</table>

泥粒組成表によると、笹島以外は20meshが最も多く、立花漁場では32mesh、中頜漁場では8meshがこれにつづく。一方細島漁場では32meshが最も多く、20meshがこれにつづいて多い。

この調査結果から、イカナゴは夏季の水温24℃付近では、海底の砂中に潜入して夏眠していることが明らかとなった。なお魚体の精密測定結果は、第81表に示す通りで、体長6.37〜9.38cm、肥満度2.94〜5.14を
Table 81. Results of measurements of activated sand-lance.

<table>
<thead>
<tr>
<th>Date</th>
<th>Total length (cm)</th>
<th>Body length (cm)</th>
<th>Head length (cm)</th>
<th>Eye diameter (cm)</th>
<th>Body height (cm)</th>
<th>Body weight (g)</th>
<th>Fatness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug. 4</td>
<td>1954</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.22</td>
<td>7.54</td>
<td>1.76</td>
<td>0.34</td>
<td>0.67</td>
<td>1.65</td>
<td>3.85</td>
<td></td>
</tr>
<tr>
<td>9.40</td>
<td>8.74</td>
<td>2.05</td>
<td>0.35</td>
<td>0.75</td>
<td>2.67</td>
<td>3.50</td>
<td></td>
</tr>
<tr>
<td>10.16</td>
<td>9.35</td>
<td>2.25</td>
<td>0.41</td>
<td>0.76</td>
<td>2.45</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>8.15</td>
<td>7.45</td>
<td>1.75</td>
<td>0.35</td>
<td>0.70</td>
<td>1.84</td>
<td>4.45</td>
<td></td>
</tr>
<tr>
<td>8.14</td>
<td>7.48</td>
<td>1.70</td>
<td>0.30</td>
<td>0.68</td>
<td>1.63</td>
<td>3.89</td>
<td></td>
</tr>
<tr>
<td>8.46</td>
<td>7.75</td>
<td>1.84</td>
<td>0.30</td>
<td>0.70</td>
<td>1.85</td>
<td>3.97</td>
<td></td>
</tr>
<tr>
<td>8.82</td>
<td>8.14</td>
<td>1.86</td>
<td>0.30</td>
<td>0.71</td>
<td>2.04</td>
<td>3.78</td>
<td></td>
</tr>
<tr>
<td>7.70</td>
<td>7.05</td>
<td>1.75</td>
<td>0.30</td>
<td>0.65</td>
<td>1.48</td>
<td>4.22</td>
<td></td>
</tr>
<tr>
<td>7.87</td>
<td>7.22</td>
<td>1.76</td>
<td>0.33</td>
<td>0.67</td>
<td>1.45</td>
<td>3.85</td>
<td></td>
</tr>
<tr>
<td>8.22</td>
<td>7.59</td>
<td>1.75</td>
<td>0.31</td>
<td>0.66</td>
<td>1.64</td>
<td>3.75</td>
<td></td>
</tr>
<tr>
<td>7.90</td>
<td>7.26</td>
<td>1.75</td>
<td>0.32</td>
<td>0.65</td>
<td>1.60</td>
<td>4.18</td>
<td></td>
</tr>
<tr>
<td>8.37</td>
<td>7.73</td>
<td>1.80</td>
<td>0.35</td>
<td>0.69</td>
<td>1.93</td>
<td>4.18</td>
<td></td>
</tr>
<tr>
<td>7.92</td>
<td>7.60</td>
<td>1.70</td>
<td>0.34</td>
<td>0.65</td>
<td>1.29</td>
<td>2.94</td>
<td></td>
</tr>
<tr>
<td>7.70</td>
<td>7.10</td>
<td>1.62</td>
<td>0.31</td>
<td>0.65</td>
<td>1.39</td>
<td>3.88</td>
<td></td>
</tr>
<tr>
<td>7.69</td>
<td>7.06</td>
<td>1.65</td>
<td>0.31</td>
<td>0.65</td>
<td>1.55</td>
<td>4.40</td>
<td></td>
</tr>
<tr>
<td>8.05</td>
<td>7.41</td>
<td>1.73</td>
<td>0.32</td>
<td>0.67</td>
<td>1.63</td>
<td>4.01</td>
<td></td>
</tr>
<tr>
<td>7.43</td>
<td>6.80</td>
<td>1.69</td>
<td>0.30</td>
<td>0.61</td>
<td>1.19</td>
<td>3.78</td>
<td></td>
</tr>
<tr>
<td>7.65</td>
<td>7.05</td>
<td>1.65</td>
<td>0.32</td>
<td>0.64</td>
<td>1.47</td>
<td>4.20</td>
<td></td>
</tr>
<tr>
<td>6.90</td>
<td>6.37</td>
<td>1.54</td>
<td>0.34</td>
<td>0.50</td>
<td>0.47</td>
<td>1.82</td>
<td></td>
</tr>
<tr>
<td>10.16</td>
<td>9.38</td>
<td>2.25</td>
<td>0.42</td>
<td>0.78</td>
<td>2.68</td>
<td>3.25</td>
<td></td>
</tr>
<tr>
<td>Aug. 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.98</td>
<td>8.28</td>
<td>2.01</td>
<td>0.35</td>
<td>0.70</td>
<td>1.89</td>
<td>3.33</td>
<td></td>
</tr>
<tr>
<td>7.56</td>
<td>6.95</td>
<td>1.68</td>
<td>0.30</td>
<td>0.68</td>
<td>1.67</td>
<td>4.98</td>
<td></td>
</tr>
<tr>
<td>7.92</td>
<td>7.25</td>
<td>1.76</td>
<td>0.35</td>
<td>0.70</td>
<td>1.78</td>
<td>4.67</td>
<td></td>
</tr>
<tr>
<td>8.27</td>
<td>7.60</td>
<td>1.86</td>
<td>0.35</td>
<td>0.70</td>
<td>1.99</td>
<td>4.53</td>
<td></td>
</tr>
<tr>
<td>8.52</td>
<td>7.80</td>
<td>1.84</td>
<td>0.31</td>
<td>0.70</td>
<td>2.15</td>
<td>4.53</td>
<td></td>
</tr>
<tr>
<td>8.41</td>
<td>7.78</td>
<td>1.85</td>
<td>0.30</td>
<td>0.71</td>
<td>2.09</td>
<td>4.44</td>
<td></td>
</tr>
<tr>
<td>8.00</td>
<td>7.40</td>
<td>1.80</td>
<td>0.35</td>
<td>0.70</td>
<td>1.78</td>
<td>4.39</td>
<td></td>
</tr>
<tr>
<td>7.85</td>
<td>7.14</td>
<td>1.65</td>
<td>0.28</td>
<td>0.65</td>
<td>1.68</td>
<td>4.62</td>
<td></td>
</tr>
<tr>
<td>8.05</td>
<td>7.38</td>
<td>1.73</td>
<td>0.31</td>
<td>0.70</td>
<td>1.90</td>
<td>4.73</td>
<td></td>
</tr>
<tr>
<td>7.79</td>
<td>7.15</td>
<td>1.70</td>
<td>0.31</td>
<td>0.64</td>
<td>1.57</td>
<td>4.30</td>
<td></td>
</tr>
<tr>
<td>8.38</td>
<td>7.75</td>
<td>1.74</td>
<td>0.37</td>
<td>0.70</td>
<td>1.65</td>
<td>3.54</td>
<td></td>
</tr>
<tr>
<td>8.51</td>
<td>7.87</td>
<td>1.81</td>
<td>0.33</td>
<td>0.69</td>
<td>1.89</td>
<td>3.88</td>
<td></td>
</tr>
<tr>
<td>8.27</td>
<td>7.64</td>
<td>1.77</td>
<td>0.35</td>
<td>0.69</td>
<td>1.84</td>
<td>4.13</td>
<td></td>
</tr>
<tr>
<td>8.22</td>
<td>7.54</td>
<td>1.80</td>
<td>0.33</td>
<td>0.71</td>
<td>1.82</td>
<td>4.25</td>
<td></td>
</tr>
<tr>
<td>7.23</td>
<td>6.60</td>
<td>1.65</td>
<td>0.32</td>
<td>0.60</td>
<td>1.18</td>
<td>4.10</td>
<td></td>
</tr>
<tr>
<td>8.08</td>
<td>7.49</td>
<td>1.73</td>
<td>0.30</td>
<td>0.65</td>
<td>1.50</td>
<td>3.57</td>
<td></td>
</tr>
<tr>
<td>9.24</td>
<td>8.56</td>
<td>2.06</td>
<td>0.37</td>
<td>0.74</td>
<td>2.53</td>
<td>4.03</td>
<td></td>
</tr>
<tr>
<td>7.96</td>
<td>7.28</td>
<td>1.78</td>
<td>0.30</td>
<td>0.66</td>
<td>1.63</td>
<td>4.22</td>
<td></td>
</tr>
<tr>
<td>8.05</td>
<td>7.42</td>
<td>1.77</td>
<td>0.32</td>
<td>0.70</td>
<td>1.72</td>
<td>4.21</td>
<td></td>
</tr>
<tr>
<td>8.05</td>
<td>7.40</td>
<td>1.75</td>
<td>0.31</td>
<td>0.69</td>
<td>1.55</td>
<td>3.83</td>
<td></td>
</tr>
<tr>
<td>8.11</td>
<td>7.50</td>
<td>1.70</td>
<td>0.31</td>
<td>0.65</td>
<td>1.92</td>
<td>4.55</td>
<td></td>
</tr>
<tr>
<td>8.50</td>
<td>7.80</td>
<td>1.82</td>
<td>0.33</td>
<td>0.64</td>
<td>1.70</td>
<td>3.58</td>
<td></td>
</tr>
<tr>
<td>8.01</td>
<td>7.42</td>
<td>1.72</td>
<td>0.32</td>
<td>0.65</td>
<td>1.72</td>
<td>4.21</td>
<td></td>
</tr>
<tr>
<td>7.84</td>
<td>7.20</td>
<td>1.74</td>
<td>0.31</td>
<td>0.70</td>
<td>1.76</td>
<td>4.72</td>
<td></td>
</tr>
<tr>
<td>7.70</td>
<td>7.09</td>
<td>1.70</td>
<td>0.30</td>
<td>0.62</td>
<td>1.55</td>
<td>4.35</td>
<td></td>
</tr>
<tr>
<td>7.94</td>
<td>7.30</td>
<td>1.76</td>
<td>0.34</td>
<td>0.66</td>
<td>1.70</td>
<td>4.37</td>
<td></td>
</tr>
<tr>
<td>7.93</td>
<td>7.27</td>
<td>1.68</td>
<td>0.33</td>
<td>0.66</td>
<td>1.59</td>
<td>4.14</td>
<td></td>
</tr>
<tr>
<td>7.66</td>
<td>7.01</td>
<td>1.73</td>
<td>0.33</td>
<td>0.65</td>
<td>1.46</td>
<td>4.24</td>
<td></td>
</tr>
</tbody>
</table>
Table 81. Continued.

<table>
<thead>
<tr>
<th>Date</th>
<th>Total length</th>
<th>Body length</th>
<th>Head length</th>
<th>Eye diameter</th>
<th>Body height</th>
<th>Body weight</th>
<th>Fatness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug. 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(cm)</td>
<td>(cm)</td>
<td>(cm)</td>
<td>(cm)</td>
<td>(cm)</td>
<td>(g)</td>
<td></td>
</tr>
<tr>
<td>8.20</td>
<td>7.55</td>
<td>1.73</td>
<td>0.33</td>
<td>0.69</td>
<td>1.85</td>
<td>4.30</td>
<td></td>
</tr>
<tr>
<td>7.85</td>
<td>7.29</td>
<td>1.73</td>
<td>0.30</td>
<td>0.64</td>
<td>1.51</td>
<td>3.90</td>
<td></td>
</tr>
<tr>
<td>7.90</td>
<td>7.35</td>
<td>1.75</td>
<td>0.30</td>
<td>0.63</td>
<td>1.36</td>
<td>3.43</td>
<td></td>
</tr>
<tr>
<td>8.09</td>
<td>7.55</td>
<td>1.70</td>
<td>0.30</td>
<td>0.70</td>
<td>1.91</td>
<td>4.44</td>
<td></td>
</tr>
<tr>
<td>7.75</td>
<td>7.10</td>
<td>1.71</td>
<td>0.30</td>
<td>0.65</td>
<td>1.69</td>
<td>4.72</td>
<td></td>
</tr>
<tr>
<td>8.00</td>
<td>7.59</td>
<td>1.79</td>
<td>0.34</td>
<td>0.64</td>
<td>1.58</td>
<td>3.91</td>
<td></td>
</tr>
<tr>
<td>8.04</td>
<td>7.41</td>
<td>1.78</td>
<td>0.30</td>
<td>0.65</td>
<td>1.61</td>
<td>3.96</td>
<td></td>
</tr>
<tr>
<td>7.72</td>
<td>7.11</td>
<td>1.75</td>
<td>0.34</td>
<td>0.69</td>
<td>1.16</td>
<td>3.23</td>
<td></td>
</tr>
<tr>
<td>8.20</td>
<td>7.52</td>
<td>1.77</td>
<td>0.30</td>
<td>0.65</td>
<td>1.69</td>
<td>3.97</td>
<td></td>
</tr>
<tr>
<td>7.60</td>
<td>6.95</td>
<td>1.61</td>
<td>0.30</td>
<td>0.63</td>
<td>1.41</td>
<td>4.20</td>
<td></td>
</tr>
<tr>
<td>7.64</td>
<td>7.07</td>
<td>1.76</td>
<td>0.32</td>
<td>0.69</td>
<td>1.80</td>
<td>5.09</td>
<td></td>
</tr>
<tr>
<td>8.08</td>
<td>7.45</td>
<td>1.75</td>
<td>0.36</td>
<td>0.70</td>
<td>1.85</td>
<td>4.47</td>
<td></td>
</tr>
<tr>
<td>7.65</td>
<td>6.95</td>
<td>1.77</td>
<td>0.32</td>
<td>0.62</td>
<td>1.45</td>
<td>4.32</td>
<td></td>
</tr>
<tr>
<td>7.42</td>
<td>6.80</td>
<td>1.61</td>
<td>0.30</td>
<td>0.60</td>
<td>1.30</td>
<td>4.13</td>
<td></td>
</tr>
<tr>
<td>7.46</td>
<td>6.80</td>
<td>1.67</td>
<td>0.31</td>
<td>0.64</td>
<td>1.25</td>
<td>3.96</td>
<td></td>
</tr>
<tr>
<td>7.39</td>
<td>6.86</td>
<td>1.70</td>
<td>0.30</td>
<td>0.57</td>
<td>1.10</td>
<td>3.41</td>
<td></td>
</tr>
<tr>
<td>7.99</td>
<td>7.35</td>
<td>1.78</td>
<td>0.31</td>
<td>0.70</td>
<td>1.79</td>
<td>4.51</td>
<td></td>
</tr>
<tr>
<td>7.73</td>
<td>7.10</td>
<td>1.66</td>
<td>0.31</td>
<td>0.69</td>
<td>1.54</td>
<td>4.30</td>
<td></td>
</tr>
<tr>
<td>8.00</td>
<td>7.39</td>
<td>1.67</td>
<td>0.30</td>
<td>0.65</td>
<td>1.67</td>
<td>4.14</td>
<td></td>
</tr>
<tr>
<td>7.83</td>
<td>7.29</td>
<td>1.78</td>
<td>0.32</td>
<td>0.69</td>
<td>1.74</td>
<td>4.49</td>
<td></td>
</tr>
<tr>
<td>7.75</td>
<td>7.14</td>
<td>1.69</td>
<td>0.34</td>
<td>0.65</td>
<td>1.70</td>
<td>4.67</td>
<td></td>
</tr>
<tr>
<td>8.02</td>
<td>7.42</td>
<td>1.69</td>
<td>0.30</td>
<td>0.70</td>
<td>1.93</td>
<td>4.72</td>
<td></td>
</tr>
<tr>
<td>7.96</td>
<td>7.30</td>
<td>1.76</td>
<td>0.32</td>
<td>0.70</td>
<td>2.00</td>
<td>5.14</td>
<td></td>
</tr>
<tr>
<td>8.25</td>
<td>7.62</td>
<td>1.88</td>
<td>0.34</td>
<td>0.72</td>
<td>2.01</td>
<td>4.94</td>
<td></td>
</tr>
<tr>
<td>8.17</td>
<td>7.50</td>
<td>1.73</td>
<td>0.30</td>
<td>0.62</td>
<td>1.39</td>
<td>3.29</td>
<td></td>
</tr>
<tr>
<td>8.39</td>
<td>7.68</td>
<td>1.77</td>
<td>0.29</td>
<td>0.71</td>
<td>1.96</td>
<td>4.33</td>
<td></td>
</tr>
<tr>
<td>6.95</td>
<td>7.36</td>
<td>1.66</td>
<td>0.30</td>
<td>0.60</td>
<td>0.87</td>
<td>3.38</td>
<td></td>
</tr>
<tr>
<td>7.97</td>
<td>7.25</td>
<td>1.71</td>
<td>0.31</td>
<td>0.69</td>
<td>1.70</td>
<td>4.46</td>
<td></td>
</tr>
<tr>
<td>8.18</td>
<td>7.50</td>
<td>1.80</td>
<td>0.30</td>
<td>0.64</td>
<td>1.68</td>
<td>3.98</td>
<td></td>
</tr>
<tr>
<td>7.78</td>
<td>7.11</td>
<td>1.77</td>
<td>0.31</td>
<td>0.62</td>
<td>1.35</td>
<td>3.76</td>
<td></td>
</tr>
<tr>
<td>7.89</td>
<td>7.24</td>
<td>1.74</td>
<td>0.34</td>
<td>0.65</td>
<td>1.68</td>
<td>4.43</td>
<td></td>
</tr>
<tr>
<td>7.67</td>
<td>7.02</td>
<td>1.73</td>
<td>0.31</td>
<td>0.62</td>
<td>1.39</td>
<td>4.02</td>
<td></td>
</tr>
<tr>
<td>7.72</td>
<td>7.20</td>
<td>1.70</td>
<td>0.30</td>
<td>0.66</td>
<td>1.65</td>
<td>4.42</td>
<td></td>
</tr>
<tr>
<td>7.65</td>
<td>7.24</td>
<td>1.72</td>
<td>0.31</td>
<td>0.67</td>
<td>1.35</td>
<td>3.56</td>
<td></td>
</tr>
<tr>
<td>7.35</td>
<td>6.94</td>
<td>1.66</td>
<td>0.29</td>
<td>0.65</td>
<td>1.25</td>
<td>3.74</td>
<td></td>
</tr>
</tbody>
</table>

林，山口（1962）は，内海区ブロック漁業において1958年5月および1959年6月に実施した中型2 enthusiastically。 2 そうびき試験操業結果を報告し，2 そうびき試験操業によって漁獲された魚食性魚類の腎内内容物によるイカナゴの分布は第112図のように，紀伊水道および豊後水道を含む瀬戸内海全域にわたるが，太平洋に面した土佐湾では捕食されていない。

イカナゴの生活史から判断すると，5月以後のものは Plankton 生活からベントス生活またはネクトン生活に移行した時期に相当する。イカナゴは水温の上昇に伴い夏眠すると考えられ，夏眠の実態も確認されたが，第112図にみられるような魚食性魚類の腎内内容物から得られた結果からみると，一部のイカナゴは5～7月では，ベントス生活に入ってからも摂餌のため遊泳し捕食されたものと考えられる。ここにみられるイカナゴの行動は8，9月の資料を欠くので判然としないが，夏眠に入る前の移動か，あるいは適温水を追って夏眠に移行することなく，深海に移動するものがあるか，今後の資料で検討したい。しかし少なくとも現在ほとんどの漁獲されていない鶴山内海中部西にイカナゴは広く分布することを示すもので，漁場の開発が期待される。なお捕食されたイカナゴの推定体長は，第82表のように，0.1才魚が混食されているようである。
Fig. 112. Map showing the places at where the sand-lance were discovered in the stomach of carnivorous fishes. (Refer from the data of T. Hayashi and Y. Yanaguchi.)
Table 82. Assumed body length of the specimens in the stomach of carnivorous fish.

<table>
<thead>
<tr>
<th>Date</th>
<th>5.5~6.0</th>
<th>6.0~6.5</th>
<th>6.5~7.0</th>
<th>7.0~7.5</th>
<th>7.5~8.0</th>
<th>8.0~8.5</th>
<th>8.5~9.0</th>
<th>9.0~9.5</th>
<th>9.5~10.0</th>
<th>10.0~10.5</th>
<th>Totl No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1958 May</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>15</td>
<td>10</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>41</td>
</tr>
<tr>
<td>July</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>7</td>
</tr>
<tr>
<td>'59 June</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>10</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>24</td>
</tr>
</tbody>
</table>

第20節 寄 生 虫

イカナゴの体腔には線虫類が寄生し、最大全長1.35cmに達する。第83表は、寄生数の平均値を示すため、観察した結果を示す。

Table 83. Number of the parasites of the specimens caught at the three fishing grounds by body lengths.

<table>
<thead>
<tr>
<th>Fishing ground</th>
<th>Date</th>
<th>Range of body length (cm)</th>
<th>No.</th>
<th>Range of parasite numbers</th>
<th>Mode</th>
<th>Total number of parasites</th>
<th>Average number of parasites</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saizaki</td>
<td>1954 Dec. 4</td>
<td>6~7</td>
<td>15</td>
<td>2~54</td>
<td>4</td>
<td>226</td>
<td>15.07</td>
<td></td>
</tr>
<tr>
<td>Dec. 29</td>
<td>6~7</td>
<td>24</td>
<td>1~62</td>
<td>2</td>
<td>242</td>
<td>10.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec. 17</td>
<td>6~7</td>
<td>13</td>
<td>0~31</td>
<td>5</td>
<td>99</td>
<td>7.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec. 21</td>
<td>6~7</td>
<td>104</td>
<td>0~86</td>
<td>3</td>
<td>792</td>
<td>7.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tachibana</td>
<td>'55 Mar. 5</td>
<td>7~8</td>
<td>1</td>
<td>3</td>
<td>—</td>
<td>3</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>Mar. 7</td>
<td>7~8</td>
<td>1</td>
<td>3</td>
<td>—</td>
<td>3</td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nakaze</td>
<td>'59 Apr. 29</td>
<td>5~6</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5~6</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6~7</td>
<td>42</td>
<td>0~2</td>
<td>0</td>
<td>4</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7~8</td>
<td>14</td>
<td>0~2</td>
<td>0</td>
<td>5</td>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8~9</td>
<td>50</td>
<td>0~21</td>
<td>3</td>
<td>253</td>
<td>5.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9~10</td>
<td>50</td>
<td>0~21</td>
<td>3</td>
<td>200</td>
<td>4.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10~11</td>
<td>4</td>
<td>5~9</td>
<td>—</td>
<td>27</td>
<td>6.75</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1尾のイカナゴに寄生する線虫類の変異の幅はきわめて広く、寄生数のモードは0～9に限られる。しかし、寄生虫数の平均値は0.06で、イカナゴ1尾に寄生する平均寄生虫数を魚種別に示すと第113図のようである。

--- 173 ---
Fig. 113. Local differences of the number of parasites.

これによると、幸崎漁場では体の伸長に伴い寄生虫数は減少するが、立花漁場では反対の傾向が強く、中瀬漁場では徐々に増加する。また中瀬漁場の資料では、0才魚にはほとんど寄生虫は認められない。このように漁場ごとに寄生虫数が相違することは興味深く、イカリナゴ魚群の別に利用されるように思われるが、その原因を明らかにすることは、現状では困難である。

第21節 雏仔 遊泳層

イカリナゴ稚仔の遊泳層を明らかにすることは、資源学的にきわめて重要なことと考えられる。

Ryland, J. S. (1964) は、Ammodytes marinus (RAIT) の North Sea での垂直分布について報告した。すなわち A. marinus は、日中で 100—5,000 Rux の水深 5〜10 m 層に多く出現し、夜間は幾分一様に分散するが、この分散は、幼魚の食性に関係するらしいという。一方 Meet, A. (1916) は Ammodytes americanus (Dr. Kay) について、体長 1 cm に達して浮上を開始し、体長 3 cm で中層生活に移行するという。筆者らは A. personatus の稚仔期の遊泳層を明らかにし、稚仔分布調査の予備調査として研究に着手した。

調査方法 1.

第1 回目の調査は、1958年1月20〜29日、立花、中瀬、鰤島の各漁場で行ない、調査方法は第114図に示すような、急潮に船を固定する方法を採用した。すなわちイカリナゴの主漁場は、沿流が潮流を利用する漁法であるため、潮流の激しい場所に限られている。したがって、イカリナゴ稚仔は、潮流にしたがって遊泳し浮遊生活をしているとみられるので、第114 図のように方向舵を避けた採集ネット (XX13) のイカリナゴ稚仔入網状況を観察して、遊泳層を調べることにした。なお採集具設置時間は、鰤島 2 時間、その他は 1 時間とした。

Fig. 114. Sketch of the formation designed for collection of larval sand-lance.

(1) 雏仔採集具の構造

船尾から鉄管 10 m を垂下し、鉄管の先端はネットで船首に固定した。Net の間隔は 2 m で、同時に 6 個を並列して使用した。鉄管は長さ 2 m の中空パイプで、これを 6 本連絡したが、その要目は第115図に示す通りである。

—174—
調査結果

第84表に調査日の気象および海況を示す。

Table 84. Climate and sea conditions at the investigation days.

<table>
<thead>
<tr>
<th>Place</th>
<th>Date</th>
<th>Time</th>
<th>Weather</th>
<th>Cloud</th>
<th>Direction of wind</th>
<th>Velocity of wind</th>
<th>wave</th>
<th>W. T. of upper layer</th>
<th>W. T. of bottom layer</th>
<th>Depth</th>
<th>Transparency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tachibana</td>
<td>Jan. 20</td>
<td>13:00</td>
<td>b c</td>
<td>6</td>
<td>E</td>
<td>1</td>
<td>0</td>
<td>11.4</td>
<td>11.2</td>
<td>25.0</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>11:00</td>
<td>r</td>
<td>10</td>
<td>E</td>
<td>1</td>
<td>0</td>
<td>11.2</td>
<td>11.2</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>Feb. 3</td>
<td>13:00</td>
<td>c</td>
<td>8</td>
<td>E</td>
<td>2</td>
<td>0</td>
<td>11.0</td>
<td>10.3</td>
<td>25.0</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10:20</td>
<td>b c</td>
<td>3</td>
<td>NW</td>
<td>1</td>
<td>0</td>
<td>10.0</td>
<td>10.3</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>Feb. 10</td>
<td>11:20</td>
<td>c</td>
<td>10</td>
<td>E</td>
<td>1</td>
<td>1</td>
<td>10.2</td>
<td>10.2</td>
<td>21.0</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>12:20</td>
<td>c</td>
<td>10</td>
<td>S</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>14:00</td>
<td>c</td>
<td>10</td>
<td>S E</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>15:00</td>
<td>c</td>
<td>10</td>
<td>S E</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>Nakaze</td>
<td>Jan. 23</td>
<td>16:00</td>
<td>b c</td>
<td>6</td>
<td>W</td>
<td>2</td>
<td>1</td>
<td>11.4</td>
<td>11.5</td>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>8:00</td>
<td>b c</td>
<td>3</td>
<td>W</td>
<td>4</td>
<td>2</td>
<td>10.6</td>
<td>9.7</td>
<td>13.0</td>
<td>3.9</td>
</tr>
<tr>
<td>Kujira Shima</td>
<td>Jan. 28</td>
<td>16:00</td>
<td>c</td>
<td>8</td>
<td>S E</td>
<td>1</td>
<td>1</td>
<td>10.8</td>
<td>10.8</td>
<td>25.0</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>8:00</td>
<td>r</td>
<td>10</td>
<td>N E</td>
<td>0</td>
<td>0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>11:00</td>
<td>r</td>
<td>10</td>
<td>NW</td>
<td>0 ~ 1</td>
<td>1</td>
<td>1</td>
<td>10.7</td>
<td>10.4</td>
<td>25.0</td>
<td>7.3</td>
</tr>
</tbody>
</table>

第85表は、調査漁場別の他イカナゴ種子数。Plankton 沈眠量と Plankton 沈眠量で補正したイカナゴ種子数を示す。

第85表によると、イカナゴ種子数は漁場、調査日、水深によって異なる。また Plankton 沈眠量はイカナゴ種子数と同様に変動が大きく、表層の Plankton 沈眠量は下層のものより多い傾向を示す。Plankton 沈眠量にみられる水深別の差は、これらの調査地点がそれぞれ潮流の激しい場所であることを考えると、採取装置が潮流に影響を受けたことがあろうと想像される。採集具によってイカナゴ種子が採集された層について、各回ごとの最少 Plankton 沈眠量を基準として、イカナゴ種子計数を補正した。これも調査期間ごとに層別合計種子数を求めて、3層間の移動平均でたらすと、第16回がえられる。第116回からイカナゴ種子の垂直分布を採ると、水深 4 〜 8m 付近に極大を示すものと、各層ともほとんど変化のないものがあることが示唆される。
Table 85. Results of the collected number of larval sand-lance and the compensated number of larval sand-lance with settling volume of plankton in various layers.

1. Tachibana

<table>
<thead>
<tr>
<th>Date</th>
<th>No. of larval sand-lance</th>
<th>Settling volume of plankton (mL)</th>
<th>No. of compensated larval sand-lance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1958, JAN. 20</td>
<td>JAN. 20</td>
<td>JAN. 21</td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td>Jan. 20</td>
<td>Jan. 21</td>
</tr>
<tr>
<td>(m)</td>
<td></td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td>Depth</td>
<td>12:40~15:00</td>
<td>12:45</td>
<td>12:45</td>
</tr>
<tr>
<td>0</td>
<td>7</td>
<td>5.1</td>
<td>12.9</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2.6</td>
<td>12.45</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>5.6</td>
<td>11.8</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>6.8</td>
<td>12.7</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td>4.8</td>
<td>9.9</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>3.1</td>
<td>9.3</td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td>31.5</td>
<td>69.06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>No. of larval sand-lance</th>
<th>Settling volume of plankton (mL)</th>
<th>No. of compensated larval sand-lance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1959, JAN. 20</td>
<td>JAN. 20</td>
<td>JAN. 21</td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td>Jan. 20</td>
<td>Jan. 21</td>
</tr>
<tr>
<td>(m)</td>
<td></td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td>Depth</td>
<td>12:50~15:05</td>
<td>14:00</td>
<td>15:05</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.7</td>
<td>5.0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0.7</td>
<td>1.6</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1.3</td>
<td>3.1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0.6</td>
<td>1.9</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0.6</td>
<td>1.3</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>No. of larval sand-lance</th>
<th>Settling volume of plankton (mL)</th>
<th>No. of compensated larval sand-lance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1959, JAN. 20</td>
<td>JAN. 20</td>
<td>JAN. 21</td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td>Jan. 20</td>
<td>Jan. 21</td>
</tr>
<tr>
<td>(m)</td>
<td></td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td>Depth</td>
<td>12:35~15:35</td>
<td>12:00</td>
<td>12:15</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>4.4</td>
<td>6.2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>8.3</td>
<td>5.0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>12.6</td>
<td>2.5</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>8.0</td>
<td>5.1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>6.3</td>
<td>4.9</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>3.4</td>
<td>7.2</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
<td>23.2</td>
<td>44.8</td>
</tr>
</tbody>
</table>

2. Nakaze

<table>
<thead>
<tr>
<th>Date</th>
<th>No. of larval sand-lance</th>
<th>Settling volume of plankton (ml)</th>
<th>No. of compensated larval sand-lance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Depth (m)</td>
<td>0</td>
<td>5</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>33</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>33.00</td>
<td>84.36</td>
<td>37.73</td>
</tr>
<tr>
<td></td>
<td>48.0</td>
<td>36.7</td>
<td>24.3</td>
</tr>
</tbody>
</table>

3. Kujirashima

<table>
<thead>
<tr>
<th>Date</th>
<th>No. of larval sand-lance</th>
<th>Settling volume of plankton (ml)</th>
<th>No. of compensated larval sand-lance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Date</td>
<td>Jan. 28</td>
<td>Jan. 29</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Depth (m)</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>18.92</td>
<td>22.53</td>
<td>17.26</td>
</tr>
<tr>
<td></td>
<td>20.7</td>
<td>19.5</td>
<td>16.9</td>
</tr>
</tbody>
</table>
Fig. 116. Relationship between the distribution of sand-lance and the depth of sea.
Remarks: Number of the larval sand-ance collected is modified with results based on the minimum settling volume of plankton in which larval sand-lance were discovered.

Fig. 117. Hourly change of the number of larval sand-lance collected during a day.

これによるとイカナゴ稚仔数は、夜間の満潮時後に減少するようである。千田（1965）は、産卵を終えた親魚が1～4月に夜間表層に多数遊泳すると報告したが、稚仔の遊泳数がこれと逆に減少を示すことは興味深い。
調査方法2。

第2回目の調査は、1958年2月18日から3月12日まで立花漁場において実施した。調査方法1では、船を固定してイカナゴ稚魚の自然入網数を計測したが、調査方法2では、Plankton netを船でひき揚してイカナゴ稚魚の層別採捕を試みた。すなわち、船尾からガラス製浮標をつけたロープを延ばし、（2月18日は5m、それ以後は10m）さらに浮標から重さ7.5kgの石をロープで垂下した。ガラス浮標と石との間に口径20cmの北原式Plankton net（GG40）を2m間隔で2個取り付け、垂下ロープを調整して採集層を決め、水平びきしてイカナゴ採集を行なった。2月24日以後は石の上部にDepressorを取り付け、Plankton netが予定水深をえい網するように配慮した。なお2月28日では、一部Plankton netを1個にしてまい網した。水位計は、手持ちが1個であったので常に下方の網に取り付けるようにした。

第118図はDepressorを示し、第119図は稚魚採集方法を示す。

Fig. 118. Composition of the depressor used. Unit: cm.

Fig. 119. Sketch of the depressor employed. Unit: m.

調査結果

第86表に調査日の気象および海況を示す。

Table 86. Climate and sea conditions.

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Weather</th>
<th>Cloud</th>
<th>Direction of wind</th>
<th>Velocity of wind</th>
<th>Wave</th>
<th>W. T. (°C) 0m</th>
<th>W. T. (°C) 25m</th>
<th>Transparency (m)</th>
<th>Depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1958</td>
<td>Feb. 18 9:00</td>
<td>0</td>
<td>10</td>
<td>E</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feb. 24 9:00</td>
<td>r</td>
<td>10</td>
<td>SE</td>
<td>—</td>
<td>—</td>
<td>11.0</td>
<td>11.0</td>
<td>6.1</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Feb. 28 9:30</td>
<td>b, c</td>
<td>5</td>
<td>SW</td>
<td>2</td>
<td>3</td>
<td>11.0</td>
<td>11.0</td>
<td>6.1</td>
<td>25</td>
</tr>
</tbody>
</table>

第87表は、層別のイカナゴ稚魚採捕数、水温、イカナゴ稚魚比数およびイカナゴ稚魚採捕数の平均値を示す。
Table 87. Results of the measurement.

<table>
<thead>
<tr>
<th>Date</th>
<th>Feb. 18</th>
<th>Feb. 24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>No. of sand-lance</td>
<td>Filtration volume of water (ton)</td>
</tr>
<tr>
<td>Depth</td>
<td>10 min</td>
<td>20 min</td>
</tr>
<tr>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Feb. 24</th>
<th>Feb. 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>No. of compensated sand-lance</td>
<td>Total</td>
</tr>
<tr>
<td>Depth</td>
<td>20 min</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Feb. 28</th>
<th>Mar. 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>Filtration volume of water (ton)</td>
<td>No. of compensated sand-lance</td>
</tr>
<tr>
<td>Depth</td>
<td>20 min</td>
<td>20 min</td>
</tr>
<tr>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>31.242</td>
<td>33.004</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>36.492</td>
<td>31.102</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>28.539</td>
<td>37.645</td>
</tr>
</tbody>
</table>

第120図は、3月12日の資料を除いた各調査ごとのイカナゴ稚仔数の移動平均値を示す。

Fig. 120. Relation between the number of collected larval sand-lance and the sea depth.

—180—
第120図をみると、イカナゴ稚仔が表層に多いほうと、水深4〜8 mに多いほうとの2型がみられる。しかしながら一般的にイカナゴ稚仔は、2月中旬以降では、採捕数が急減することをあわせて考慮すると、特定体長の稚仔数だけを取り扱っていることになるかも知れない。なお採捕イカナゴの補正値は、全部についての捕獲量が明らかでないから、便宜的に上部の Plankton net も下部の Plankton net と同じとして補正した。また捕獲速度は第88表の通りで、1秒間0.7〜1.4mであった。

<table>
<thead>
<tr>
<th>水深 (m)</th>
<th>Feb. 18</th>
<th>Feb. 24</th>
<th>Feb. 28</th>
<th>Mar. 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>—</td>
<td>0.9665</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>0.9310</td>
<td>0.7015</td>
<td>0.7998</td>
<td>0.8512</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>—</td>
<td>1.1335</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>0.7958</td>
<td>0.8641</td>
<td>0.7995</td>
<td>0.7170</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>—</td>
<td>1.3233</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>0.9628</td>
<td>0.8344</td>
<td>0.9141</td>
<td>0.8577</td>
</tr>
</tbody>
</table>

調査方法3

前述の遊泳層調査は、調査方法1では、潮流の遅い場所で各所定の水深にパイプで取り付けた Plankton net によって採捕されたイカナゴ数を算定し、調査方法2では、ガラス製浮標からロープで Depressor と7.5kgの石をつるしたに Plankton net を取り付けてえい網採捕したイカナゴ数を算定した。しかしながら、これらの各調査では、沪水計が不足したため全部の沪水計を求められなかった。したがって、採捕したイカナゴ数の補正は、Plankton 沈濁量、また一部の沪水計を基礎として補正を行なった。1960年1月12日、沪水計を装備した Plankton net を2 m間隔に2個取り付け、調査方法2と同様に船尾から10 m後方をえい網してイカナゴ稚仔の遊泳層を調査した。調査は愛媛県玉縄島南部海域で、使用したネットの網地の目合はGG40であった。なおえい網時間は10分間である。採集時間は午前8時30分から午後4時までで、気象条件は第88表に示す通りである。

<table>
<thead>
<tr>
<th>時間</th>
<th>A. T(°C)</th>
<th>天気</th>
<th>積雲</th>
<th>風向</th>
<th>風速</th>
<th>波高</th>
<th>水質透明度 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30</td>
<td>7.1</td>
<td>b</td>
<td>2</td>
<td>SW</td>
<td>2</td>
<td>3</td>
<td>3.5</td>
</tr>
<tr>
<td>11:30</td>
<td>—</td>
<td>b c</td>
<td>3</td>
<td>W</td>
<td>3</td>
<td>3</td>
<td>3.2</td>
</tr>
<tr>
<td>12:50</td>
<td>—</td>
<td>c</td>
<td>9</td>
<td>W</td>
<td>4</td>
<td>4</td>
<td>2.8</td>
</tr>
</tbody>
</table>

第90表は3回実施した調査結果を集計したもので、イカナゴおよびサジッタの個体数は、水深1 m²中の個体数に補正した補正値である。また第121，122図は、イカナゴおよびサジッタ採捕数を、水深2 mごとに移動平均したもので示す。
<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Total</th>
<th>A. V.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Total</th>
<th>A. V.</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.071</td>
<td>0.099</td>
<td>0.106</td>
<td>0.276</td>
<td>0.303</td>
<td>0.565</td>
<td>3.283</td>
<td>1.110</td>
<td>4.958</td>
<td>6.644</td>
<td>0.7506</td>
<td>1.0667</td>
</tr>
<tr>
<td>2</td>
<td>0.071</td>
<td>0</td>
<td>0.259</td>
<td>0.330</td>
<td>0.481</td>
<td>0.849</td>
<td>6.340</td>
<td>1.140</td>
<td>8.329</td>
<td>11.578</td>
<td>0.7499</td>
<td>0.7865</td>
</tr>
<tr>
<td>4</td>
<td>0.069</td>
<td>0.317</td>
<td>0.450</td>
<td>0.836</td>
<td>0.888</td>
<td>8.934</td>
<td>9.684</td>
<td>2.829</td>
<td>21.447</td>
<td>15.914</td>
<td>0.7720</td>
<td>1.0026</td>
</tr>
<tr>
<td>6</td>
<td>0.065</td>
<td>0.566</td>
<td>0.868</td>
<td>1.457</td>
<td>0.969</td>
<td>7.318</td>
<td>6.617</td>
<td>4.030</td>
<td>17.965</td>
<td>20.304</td>
<td>0.8410</td>
<td>0.9380</td>
</tr>
<tr>
<td>8</td>
<td>0.137</td>
<td>0.181</td>
<td>0.317</td>
<td>0.635</td>
<td>0.849</td>
<td>8.912</td>
<td>4.763</td>
<td>7.625</td>
<td>21.500</td>
<td>17.346</td>
<td>0.7739</td>
<td>0.8799</td>
</tr>
<tr>
<td>10</td>
<td>0.074</td>
<td>0.136</td>
<td>0.204</td>
<td>0.414</td>
<td>0.685</td>
<td>3.252</td>
<td>6.323</td>
<td>2.924</td>
<td>12.572</td>
<td>20.580</td>
<td>0.7179</td>
<td>1.1661</td>
</tr>
<tr>
<td>12</td>
<td>0.131</td>
<td>0.292</td>
<td>0.583</td>
<td>1.066</td>
<td>0.513</td>
<td>12.372</td>
<td>6.667</td>
<td>8.630</td>
<td>27.669</td>
<td>18.373</td>
<td>0.8104</td>
<td>0.9181</td>
</tr>
<tr>
<td>14</td>
<td>0.053</td>
<td>0</td>
<td>0.055</td>
<td>0.118</td>
<td>0.062</td>
<td>9.455</td>
<td>4.278</td>
<td>1.146</td>
<td>14.879</td>
<td>22.937</td>
<td>0.8469</td>
<td>0.9301</td>
</tr>
<tr>
<td>16</td>
<td>0.156</td>
<td>0</td>
<td>0.527</td>
<td>0.683</td>
<td>0.360</td>
<td>13.537</td>
<td>9.191</td>
<td>4.538</td>
<td>27.263</td>
<td>21.879</td>
<td>0.6819</td>
<td>0.7752</td>
</tr>
<tr>
<td>18</td>
<td>0.071</td>
<td>0.138</td>
<td>0.129</td>
<td>0.338</td>
<td>0.417</td>
<td>9.211</td>
<td>12.264</td>
<td>2.021</td>
<td>23.496</td>
<td>26.657</td>
<td>0.7487</td>
<td>0.7700</td>
</tr>
<tr>
<td>20</td>
<td>0.080</td>
<td>0.149</td>
<td>0</td>
<td>0.229</td>
<td>0.243</td>
<td>5.051</td>
<td>8.879</td>
<td>15.282</td>
<td>29.212</td>
<td>27.353</td>
<td>0.6618</td>
<td>0.7111</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>0.161</td>
<td>0</td>
<td>0.161</td>
<td>0.193</td>
<td>5.096</td>
<td>7.127</td>
<td>17.128</td>
<td>29.351</td>
<td>29.282</td>
<td>0.6871</td>
<td>0.9901</td>
</tr>
</tbody>
</table>

Table 90. Results of the

Fig. 121. Relations between the sea depth and the number of collected larval sand-lance and Chaetognatha.

Fig. 122. Frequency distribution of the velocity of filtration.

まず第90表について水温ならびに比重をみると、両者とも底層から22m層までほとんど差が認められ
ない。イカナゴ稚仔数は水深6mで最も大きく、水深4、8mの採択数がこれにつづく。また水深22m付近で
も個体数は少ないがイカナゴ稚仔が採集された。しかし、Plankton net を引き上げる際に上層のものが混
入したことも考えられるので速断は出来ない。いずれにしても本調査結果ではイカナゴ稚仔の遊泳層は4～
8m付近と想像される。つぎにサジッタの分布は、水深が大きくなるにしたがって、個体数は増加すること
を示す。なお今回の調査から Depressor のロープ取り付け部分を Chain に改良したので第123図、第2図
版に示す。--- 182 ---
measurement.

velocity of	Amount of filtrated	Water temperature (°C)	Chlorinity (%)										
per sec(m)	water per 10 min(m³)	1	2	3	A. V.	1	2	3	A. V.	1	3	A. V.	
3	A. V.												
1.0033	0.9403	14.1523	20.1065	18.9127	17.7336	12.6	12.4	12.5	18.11	18.10	18.105		
1.0237	0.8534	14.1344	14.8258	19.2958	16.0853	12.6	12.4	12.5	18.10	18.09	18.095		
0.8252	0.8666	14.5519	18.8977	15.5551	16.3343	12.3	12.5	12.4	18.09	18.08	18.035		
0.8556	0.8782	15.8519	17.6809	16.1285	16.5536	12.3	12.5	12.4	18.07	18.08	18.075		
1.0033	0.8857	14.5869	16.5849	18.9127	16.6948	12.4	12.5	12.45	18.07	18.08	18.075		
0.7799	0.8880	13.5321	21.9814	14.7069	16.7381	12.4	12.5	12.45	18.07	18.08	18.070		
0.9098	0.8794	15.2762	17.0994	17.1494	16.5083	12.5	12.5	12.5	18.11	18.10	18.105		
0.9725	0.9165	15.9634	17.5328	18.3313	17.2758	12.4	12.5	12.45	18.08	18.09	18.085		
1.0060	0.8210	12.8535	14.6118	18.9626	15.4760	12.3	12.5	12.4	18.07	18.09	18.080		
1.2338	0.9175	14.1121	14.5136	23.2573	17.3943	12.3	12.6	12.45	18.06	18.10	18.080		
1.0171	0.7967	12.4739	13.4030	19.1724	15.0164	12.8	12.7	12.75	18.11	18.12	18.115		
0.9695	0.8822	12.9522	18.6624	18.2742	16.6296	12.8	12.7	12.75	18.12	18.11	18.115		

Plate Ⅱ. Photograph of the depressor employed.

Fig. 123. Composition of the depressor employed since January in 1960. Unit: cm.

調査方法 4．
調査方法 3 について検討すると，Plankton net を同時に 2 か所設置してえい網するばあい 予定水深よりも浮上することが懸念された。本調査では，Plankton net 1 個を Depressor の上方 3 m のところに取り付け，
ネットの網目はXX13のものを使用した。調査は1960年1月14日、調査地点は愛媛県百貫島南部海域で、調査時間は8時25分から14時15分までであった。第91表は調査日の気象条件を示す。

<table>
<thead>
<tr>
<th>Time</th>
<th>A. T. (°C)</th>
<th>Weather</th>
<th>Cloud</th>
<th>Dir. of wind</th>
<th>Vel. of wind</th>
<th>Wave</th>
<th>Transparency (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:10</td>
<td>6.3</td>
<td>c</td>
<td>9</td>
<td>NE</td>
<td>1</td>
<td>1</td>
<td>3.7</td>
</tr>
<tr>
<td>12:00</td>
<td>7.4</td>
<td>c</td>
<td>10</td>
<td>W</td>
<td>1</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>14:20</td>
<td>8.4</td>
<td>c</td>
<td>9</td>
<td>SW</td>
<td>1</td>
<td>1</td>
<td>2.8</td>
</tr>
</tbody>
</table>

調査結果

第92表は調査結果を示したもので、イカナゴおよびサジッタの個体数は、それぞれ海水1m³の補正値を示す。

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Number of larval sand-lance per m³</th>
<th>Number of Chaetognatha per m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.368</td>
<td>0.195</td>
</tr>
<tr>
<td>2</td>
<td>0.351</td>
<td>0.126</td>
</tr>
<tr>
<td>4</td>
<td>0.603</td>
<td>0.837</td>
</tr>
<tr>
<td>6</td>
<td>0.900</td>
<td>0.911</td>
</tr>
<tr>
<td>8</td>
<td>1.281</td>
<td>1.532</td>
</tr>
<tr>
<td>10</td>
<td>1.567</td>
<td>1.711</td>
</tr>
<tr>
<td>12</td>
<td>1.351</td>
<td>0.358</td>
</tr>
<tr>
<td>14</td>
<td>0.564</td>
<td>0.545</td>
</tr>
<tr>
<td>16</td>
<td>0.080</td>
<td>0.231</td>
</tr>
<tr>
<td>18</td>
<td>0.165</td>
<td>0.600</td>
</tr>
<tr>
<td>20</td>
<td>0.533</td>
<td>0.508</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Velocity of filtration per sec</th>
<th>Amount of filtration per 10 minutes (m³)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.6819</td>
<td>0.5494</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>0.6037</td>
<td>0.4203</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>0.4328</td>
<td>0.5076 (0.6938)</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>0.5892</td>
<td>0.6100 (0.5923)</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>0.7455</td>
<td>0.5806</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>0.4739</td>
<td>0.6202</td>
<td>—</td>
</tr>
<tr>
<td>12</td>
<td>0.5889</td>
<td>0.5934</td>
<td>—</td>
</tr>
<tr>
<td>14</td>
<td>0.5640</td>
<td>0.4866</td>
<td>—</td>
</tr>
<tr>
<td>16</td>
<td>0.6660</td>
<td>0.4588</td>
<td>—</td>
</tr>
<tr>
<td>18</td>
<td>0.6432</td>
<td>0.4018</td>
<td>—</td>
</tr>
<tr>
<td>20</td>
<td>0.3981</td>
<td>0.6270</td>
<td>—</td>
</tr>
</tbody>
</table>

第124図は第92表からイカナゴおよびサジッタの垂直分布を示したものである。
Fig. 124. Relations between the sea depth and the number of collected larval sand-lance and Chaetognatha.

イカナゴの分布の厚い水深は6～12mで、分布水深は、調査方法3のばごあり殻分深け。またサジッタでは、水深の増大に伴い個体数が増加する傾向を示し同様であるが、水深12～14m付近に極大値が現われる。ここで注意を要することは、Plankton net の海底が速度が0.3～0.8m/secで調査方法3に比較して幾分劣る。

調査方法5

3月以降の Plankton net によるイカナゴ稚仔の採捕数は急激に減少するが、その原因として、(1)魚体の成長による魚苗の増大(2)魚苗層の変化などが考えられる。本実験は1960年3月3日福山市東部海域および3月4日三原市日赤病院前の2カ所で行なった。使用したネットは第3図版に示す通り、口径90cm、網の長さ170cm、網目GG40であった。

Plate III. Phtograph of the plankton-net used for collection of larval sand-lance.

第98表に調査日の気象条件を示す。
Table 93. Climate and sea conditions at the investigation days.

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Weather</th>
<th>Cloud</th>
<th>Dir. of wind</th>
<th>Vel. of wind</th>
<th>Wave</th>
<th>Swells</th>
<th>A. T. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar. 3</td>
<td>10:30</td>
<td>c</td>
<td>10</td>
<td>E</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>14:20</td>
<td>b, c</td>
<td>6</td>
<td>E</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td>16:00</td>
<td>b, c</td>
<td>6</td>
<td>E</td>
<td>2</td>
<td>2</td>
<td>—</td>
<td>12.6</td>
</tr>
<tr>
<td>Mar. 4</td>
<td>8:35</td>
<td>c</td>
<td>10</td>
<td>NE</td>
<td>2</td>
<td>1</td>
<td>—</td>
<td>7.6</td>
</tr>
<tr>
<td></td>
<td>13:30</td>
<td>c</td>
<td>10</td>
<td>E</td>
<td>1</td>
<td>1</td>
<td>—</td>
<td>9.2</td>
</tr>
</tbody>
</table>

調査結果

第94表は調査時の水温、塩分、透明度、懸濁質係数、Plankton量などを示す。第95表は観測時と、えい刺激、沈水量および稚仔採捕数を示す。

Table 94. Sea conditions.

<table>
<thead>
<tr>
<th>Date</th>
<th>1960</th>
<th>Mar. 3</th>
<th>Mar. 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Na</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Depth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water temperature (°C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>10.4</td>
<td>10.0</td>
<td>10.8</td>
</tr>
<tr>
<td>2</td>
<td>10.4</td>
<td>10.0</td>
<td>10.6</td>
</tr>
<tr>
<td>4</td>
<td>10.0</td>
<td>9.8</td>
<td>10.7</td>
</tr>
<tr>
<td>6</td>
<td>10.0</td>
<td>9.8</td>
<td>10.6</td>
</tr>
<tr>
<td>8</td>
<td>9.9</td>
<td>9.8</td>
<td>10.5</td>
</tr>
<tr>
<td>10</td>
<td>9.8</td>
<td>9.8</td>
<td>10.4</td>
</tr>
<tr>
<td>12</td>
<td>9.8</td>
<td>9.8</td>
<td>10.7</td>
</tr>
<tr>
<td>14</td>
<td>9.8</td>
<td>9.8</td>
<td>10.6</td>
</tr>
<tr>
<td>16</td>
<td>9.8</td>
<td>9.8</td>
<td>10.4</td>
</tr>
<tr>
<td>18</td>
<td>9.8</td>
<td>9.8</td>
<td>10.7</td>
</tr>
<tr>
<td>20</td>
<td>9.8</td>
<td>10.0</td>
<td>—</td>
</tr>
<tr>
<td>Chlorinity (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>18.09</td>
<td>18.21</td>
<td>18.29</td>
</tr>
<tr>
<td>2</td>
<td>18.10</td>
<td>18.11</td>
<td>18.29</td>
</tr>
<tr>
<td>4</td>
<td>18.11</td>
<td>18.11</td>
<td>18.28</td>
</tr>
<tr>
<td>6</td>
<td>18.11</td>
<td>18.11</td>
<td>18.29</td>
</tr>
<tr>
<td>8</td>
<td>18.10</td>
<td>18.11</td>
<td>18.30</td>
</tr>
<tr>
<td>10</td>
<td>18.07</td>
<td>18.11</td>
<td>18.30</td>
</tr>
<tr>
<td>12</td>
<td>18.11</td>
<td>18.09</td>
<td>18.30</td>
</tr>
<tr>
<td>14</td>
<td>18.13</td>
<td>18.11</td>
<td>18.29</td>
</tr>
<tr>
<td>16</td>
<td>18.21</td>
<td>18.09</td>
<td>18.30</td>
</tr>
<tr>
<td>18</td>
<td>18.19</td>
<td>18.13</td>
<td>18.28</td>
</tr>
<tr>
<td>20</td>
<td>18.19</td>
<td>18.13</td>
<td>—</td>
</tr>
<tr>
<td>Transparency (m)</td>
<td>7.8</td>
<td>9.4</td>
<td>6.7</td>
</tr>
<tr>
<td>Illumination (%) at the compensation depth</td>
<td>13.7</td>
<td>17.5</td>
<td>11.8</td>
</tr>
<tr>
<td>Suspension factor (a)</td>
<td>0.49</td>
<td>0.37</td>
<td>0.57</td>
</tr>
<tr>
<td>Extinction coefficient</td>
<td>0.295</td>
<td>0.185</td>
<td>0.319</td>
</tr>
<tr>
<td>Settling volume (a/3/m³) of Plankton</td>
<td>7.995</td>
<td>7.859</td>
<td>2.788</td>
</tr>
<tr>
<td>Displaced volume (a/3/m³) of Plankton</td>
<td>2.535</td>
<td>3.494</td>
<td>1.295</td>
</tr>
<tr>
<td>Number of chaetognatha per m³</td>
<td>18</td>
<td>27</td>
<td>3</td>
</tr>
</tbody>
</table>
Table 95. Results of horizontal towing of the plankton net with 129 mesh.

<table>
<thead>
<tr>
<th>Date</th>
<th>Items</th>
<th>Depth of towing (m)</th>
<th>Duration of towing (min)</th>
<th>Velocity of towing (m/sec)</th>
<th>Amount of filtration (m³)</th>
<th>Number of larval sand-lance</th>
<th>Number of other larval fish</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960 Mar. 3</td>
<td></td>
<td>0</td>
<td>10</td>
<td>0.9323</td>
<td>355.8726</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.8383</td>
<td>319.9637</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5*</td>
<td>0.5918</td>
<td>225.8927</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>10</td>
<td>0.7813</td>
<td>298.2161</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0.8944</td>
<td>170.7039</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>10</td>
<td>0.5812</td>
<td>221.8465</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0.6104</td>
<td>116.4866</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>10</td>
<td>0.4667</td>
<td>178.1491</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0.5388</td>
<td>102.8312</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>10</td>
<td>0.5661</td>
<td>216.0664</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0.5999</td>
<td>103.0335</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>10</td>
<td>0.5706</td>
<td>217.8005</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0.6395</td>
<td>122.5050</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>10</td>
<td>0.3785</td>
<td>144.4656</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0.5262</td>
<td>100.8081</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>10</td>
<td>0.4156</td>
<td>158.6268</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0.6238</td>
<td>119.0543</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>10</td>
<td>0.6143</td>
<td>234.4715</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0.7439</td>
<td>141.9673</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>10</td>
<td>0.5939</td>
<td>226.6828</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0.7121</td>
<td>135.8982</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>10</td>
<td>0.6379</td>
<td>243.4740</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0.6479</td>
<td>123.6589</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>10</td>
<td>0.6127</td>
<td>233.8646</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0.6230</td>
<td>118.9047</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>10</td>
<td>0.6448</td>
<td>246.1039</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0.6940</td>
<td>132.4591</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>10</td>
<td>0.6742</td>
<td>257.4830</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0.7449</td>
<td>142.1696</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>10</td>
<td>0.6169</td>
<td>235.4830</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0.8334</td>
<td>159.0619</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>10</td>
<td>0.6116</td>
<td>233.4600</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0.8461</td>
<td>161.4966</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>10</td>
<td>0.7924</td>
<td>322.4454</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0.9090</td>
<td>173.4255</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

* Two larval sand-lance were taken by Chaetognatha.

第94表から、走島西部海域と三原海域との環境を比較すると、後者が高温、高からであるが透明度は小さく、Plankton量も小さい。第95表からイカナゴ種子数を毎秒1m³当たりに補正すると第96表のようになる。

Table 96. Average number of the larval sand-lance per m³ caught at each depth.

<table>
<thead>
<tr>
<th>Date</th>
<th>Depth (m)</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960 Mar. 3</td>
<td></td>
<td>0.0015</td>
<td>0.0027</td>
<td>0.0085</td>
<td>0.0236</td>
<td>0.0071</td>
<td>0.0125</td>
<td>0.0147</td>
<td>0.0082</td>
<td>0.0072</td>
</tr>
<tr>
<td>Mar. 4</td>
<td></td>
<td>0.0027</td>
<td>0.0055</td>
<td>0</td>
<td>0</td>
<td>0.0079</td>
<td>0.0075</td>
<td>0.0025</td>
<td>0.0051</td>
<td>0.0105</td>
</tr>
</tbody>
</table>

第125図は、第96表を示したもので、両海域ではイカナゴ種子の分散様相が分裂らず、走島西部海域で
は中層に多く、三原海域では底層に多いような傾向を示す。

Fig. 125. Comparison of vertical distribution of larval sand-lance between two fishing grounds.

しかしながらイカナゴ稚仔採捕数は、Plankton net の口径を大きくしたのもかかわらずきわめて少ない。なおここで使用したネットの海水流速は 0.38～0.93 m/sec で、網目 XX13、口径 20cm の Plankton net の流速をほぼ同じであった。第126図は本調査に使用した Depressor を示す。

Fig. 126. Diagramatic representation of the depressor employed. Unit: cm.

調査方法 6。
イカナゴ稚仔の遊泳層は、これまでの調査では 1～2月に、水深 6～10m 付近であることがほぼ明らかとなった。また調査方法 5 では、3月の稚仔は海域によって遊泳層が異なること、および流速を10～30倍に増加しても稚仔の採捕は困難なことがわかった。そこで、ネットの網目 GG20、口径 90cm、網の長さ 170cm のネットを使用して、イカナゴの採捕状況を観察することとした。実験は、1963年3月22～28日の間、第127図に示す走島周辺において実施した。なお、この時期にはすでに走島漁業組合の底曳網の操業が開始されていた。

第97表に観測日の気象、水温、Plankton 浮遊量、Plankton 排水量を示す。また第98表に Plankton の種類を示す。

Fig. 127. Map of the test fishing area.
<table>
<thead>
<tr>
<th>Date</th>
<th>Weather</th>
<th>Cloud</th>
<th>Dir. of wind</th>
<th>Vel. of wind</th>
<th>Water temperature (5m layer) (°C)</th>
<th>Settling volume of plankton (m³/m³)</th>
<th>Displaced volume of plankton (m³/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1963 Mar. 22</td>
<td>c</td>
<td>10</td>
<td>E</td>
<td>2</td>
<td>10.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>26</td>
<td>b</td>
<td>1</td>
<td>—</td>
<td>0</td>
<td>10.0</td>
<td>69.74</td>
<td>10.47</td>
</tr>
<tr>
<td>27</td>
<td>b</td>
<td>0</td>
<td>W</td>
<td>1</td>
<td>10.2</td>
<td>36.92</td>
<td>5.98</td>
</tr>
<tr>
<td>28</td>
<td>c</td>
<td>10</td>
<td>NE</td>
<td>2</td>
<td>10.0</td>
<td>27.42</td>
<td>8.29</td>
</tr>
</tbody>
</table>

Table 98. Species of the plankton collected.

1. Rhizosolenia setigera Brightw.
2. R. stilliformis Brightw.
4. R. krebata (Bail.)
5. Leptocylindrus danicus Cleve.
6. Chaetoceros decipiens Cleve.
7. C. Schuttii Cleve.
8. Asterionella japonica Cleve.
11. Eucampia zooidiacs Ehrenb.
15. Lauderia borealis Gran.
17. Melosira Borrerii Grav.
18. Planktoniella sol (Wallig.).
19. Polychaeta larva.
21. Ceratium longipes Gran.
22. C. fusus (Ehrenberg).
23. Peridinium divergens Ehrenberg.
24. Tintinnopsis subacuta Jörg.
25. Copepoda sp.

調査結果

調査結果を第99、100表に示す。第99表は、えい網速度、沪水量、イカナゴ稚仔採捕尾数などを示し第100表は、イカナゴ稚仔数を採集深度別に示す。

調査方法5. 2か月の間で、6月と9月の海水を採用して求めた。えい網速度、沪水量、イカナゴ稚仔数を採捕尾数と比較することによって実験を行った。第99表は、えい網速度と沪過程速度とイカナゴ稚仔採捕数との関係を示す。第99表に記載したように、沪過程速度1.8m/secで採捕数は増加する。第100表に採集深度別に示すと、えい網速度1.0～1.5m/secが限界で、これより遅いと沪過程速度は遅くなり、採捕数は減少する。すなわち海面では水深の大きさに比例して個体数が増加するが、1.0～1.5m/secの沪過程速度範囲で最大採捕数を示す。

第100表は、えい網速度と採集深度別に体長組成を示す。水深5mと10mでは、有意の差は認められなかった。また沪過程速度別に体長組成を示すと、第101表のように、沪過程速度の遅さによる差は認められない。しかしこれはあくまで、えい網速度が予定水深を正常な状態で通過したものと仮定したものである。
<table>
<thead>
<tr>
<th>Date</th>
<th>Depth of towing (m)</th>
<th>Duration of towing (min)</th>
<th>Velocity of towing (m/sec)</th>
<th>Amount of filtration (m³)</th>
<th>Number of larval sand-lance</th>
<th>Number of other fish</th>
<th>Number of Chaetognatha</th>
</tr>
</thead>
<tbody>
<tr>
<td>1963 Mar. 22</td>
<td>5</td>
<td>5</td>
<td>0.209</td>
<td>39.888</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.495</td>
<td>94.472</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.814</td>
<td>155.354</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.040</td>
<td>198.486</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.354</td>
<td>258.414</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.489</td>
<td>284.179</td>
<td>77</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.518</td>
<td>289.714</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.540</td>
<td>293.912</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>*1.800</td>
<td></td>
<td></td>
<td>343.534</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.867</td>
<td></td>
<td></td>
<td>356.321</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.891</td>
<td></td>
<td></td>
<td>360.902</td>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.986</td>
<td></td>
<td></td>
<td>379.032</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.445</td>
<td></td>
<td></td>
<td>466.634</td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>5</td>
<td>5</td>
<td>1.527</td>
<td>291.511</td>
<td>1</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.618</td>
<td>308.852</td>
<td>17</td>
<td>0</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.683</td>
<td>321.197</td>
<td>1</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td>1.238</td>
<td>236.256</td>
<td>2</td>
<td>0</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.949</td>
<td>372.043</td>
<td>1</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td>1.477</td>
<td>281.812</td>
<td>0</td>
<td>1</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.639</td>
<td>350.882</td>
<td>2</td>
<td>2</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>1.389</td>
<td>265.059</td>
<td>1</td>
<td>0</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.515</td>
<td>289.160</td>
<td>1</td>
<td>0</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.628</td>
<td>310.616</td>
<td>0</td>
<td>0</td>
<td>86</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td>5</td>
<td>1.235</td>
<td>235.668</td>
<td>0</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td>1.109</td>
<td>211.567</td>
<td>5</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.213</td>
<td>231.553</td>
<td>5</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td>1.132</td>
<td>215.976</td>
<td>3</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.181</td>
<td>225.381</td>
<td>8</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.449</td>
<td>276.522</td>
<td>17</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td>1.879</td>
<td>358.523</td>
<td>3</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.074</td>
<td>395.850</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.145</td>
<td>409.370</td>
<td>14</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>1.275</td>
<td>243.604</td>
<td>6</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.370</td>
<td>261.532</td>
<td>4</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>28</td>
<td>5</td>
<td>5</td>
<td>1.406</td>
<td>268.292</td>
<td>2</td>
<td>0</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td>0.483</td>
<td>92.239</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.693</td>
<td>132.211</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.279</td>
<td>244.192</td>
<td>0</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td>1.292</td>
<td>246.543</td>
<td>1</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.315</td>
<td>250.952</td>
<td>2</td>
<td>1</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.369</td>
<td>261.238</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>1.315</td>
<td>250.952</td>
<td>1</td>
<td>1</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.332</td>
<td>254.185</td>
<td>3</td>
<td>2</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.591</td>
<td>303.562</td>
<td>1</td>
<td>0</td>
<td>24</td>
</tr>
</tbody>
</table>
Table 100. Correlation table between the body length of larval sand-lance and the sea depth.

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>0.6</th>
<th>0.8</th>
<th>1.0</th>
<th>1.2</th>
<th>1.4</th>
<th>1.6</th>
<th>1.8</th>
<th>2.0</th>
<th>2.2</th>
<th>2.4</th>
<th>2.6</th>
<th>2.8</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>22</td>
<td>27</td>
<td>23</td>
<td>10</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>94</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>5</td>
<td>18</td>
<td>15</td>
<td>8</td>
<td>14</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>73</td>
</tr>
<tr>
<td>15</td>
<td>—</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>16</td>
</tr>
<tr>
<td>20</td>
<td>—</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>12</td>
<td>45</td>
<td>42</td>
<td>34</td>
<td>27</td>
<td>11</td>
<td>8</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>—</td>
</tr>
</tbody>
</table>

Fig. 128. Relation between the towing velocity of plankton net and the number of collected larval sand-lance and Chaetognatha.
Table 101. Correlation table between the body length and the towing velocity of plankton net.

<table>
<thead>
<tr>
<th>Body length (cm)</th>
<th>Vel. of towing (m/sec)</th>
<th>0.8</th>
<th>1.0</th>
<th>1.2</th>
<th>1.4</th>
<th>1.6</th>
<th>1.8</th>
<th>2.0</th>
<th>2.2</th>
<th>2.4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.4 ></td>
<td>6</td>
<td>11</td>
<td>9</td>
<td>6</td>
<td>8</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>1.6 ></td>
<td>2</td>
<td>12</td>
<td>16</td>
<td>11</td>
<td>11</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>8</td>
<td>23</td>
<td>25</td>
<td>17</td>
<td>19</td>
<td>7</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>---</td>
</tr>
</tbody>
</table>

Table 102. Results of the experiment on resitance

<table>
<thead>
<tr>
<th>No.</th>
<th>Date</th>
<th>Water-tank No.</th>
<th>No. of specimens</th>
<th>Amount of water (L)</th>
<th>Amount of sand (L)</th>
<th>Chlorinity (%)</th>
<th>W. T. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1954 Apr. 29~May 9</td>
<td>1</td>
<td>10</td>
<td>4</td>
<td>3.7</td>
<td>9.89</td>
<td>14.3~21.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>4.6</td>
<td>16.51</td>
<td>14.2~22.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>5.9</td>
<td>17.89</td>
<td>13.9~21.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td>3.0</td>
<td>18.88</td>
<td>14.0~22.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td>5.2</td>
<td>20.67</td>
<td>13.7~21.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td>4.5</td>
<td>22.19</td>
<td>14.3~21.8</td>
</tr>
<tr>
<td>2</td>
<td>'60 May13~May18</td>
<td>1</td>
<td>10</td>
<td>5</td>
<td>1.0</td>
<td>28.70~29.63</td>
<td>16.6~21.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>23.35~24.21</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>21.47~22.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>20.33~21.08</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>'60 May18~May23</td>
<td>1</td>
<td>10</td>
<td></td>
<td></td>
<td>7.94~8.49</td>
<td>16.2~21.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>6.21~6.53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>4.69~4.90</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>2.86~3.21</td>
<td></td>
</tr>
</tbody>
</table>
（4）1～2月までの採集では、えい関数に対するイカナゴ稚仔の採捕数の変化は少ないが、3月ではかなり目だつ。

第22節 塩分濃度変化に対する抵抗力

イカナゴは1本鈎、延縄などの生餌として使用されるが、本魚の繁殖についての知識をうること、ならびに漁場保護、造成の見地から塩分濃度に対する適応範囲を知ることが必要である。

研究方法

イカナゴの塩分濃度抵抗試験は、1954年4月29日～5月9日、1960年5月13日～5月18日、5月18日～5月23日の3回実施した。供試水の調製は、普通海水、飽和食塩水および蒸留水を適宜に混合したもので第102表に示す通りである。海水容器は、直径20cm、深さ17cmの円形ガラス水槽で、第1回の実験では、供試水4ℓのうち半分の2ℓを毎日新しく用意した同比重の海水と取り替え、第2、3回の実験では、エアーポンプで酸素を送気して換水は行わなかった。したがって、第2回目以後の実験では、日時の変化に伴う水分の蒸発により塩分濃度は幾分増加した。

研究結果

第102表は、塩分濃度に対するイカナゴの抵抗試験結果を示す。

第1回の実験では、塩素量は9.89～22.19%の範囲で飼育した。供試魚の体長組成は第103表に示す。

<table>
<thead>
<tr>
<th>Days after the start of experiment</th>
<th>No. of survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-7</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-8</td>
<td>-1</td>
</tr>
</tbody>
</table>

一覧 一
Table 103. Distributions of the body length and fatness of the

<table>
<thead>
<tr>
<th>Date</th>
<th>4.8~5.0</th>
<th>5.0~5.2</th>
<th>5.2~5.4</th>
<th>5.4~5.6</th>
<th>5.6~5.8</th>
<th>5.8~6.0</th>
<th>6.0~6.2</th>
<th>6.2~6.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1954 Apr. 4~May 9</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>11</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>'60 May 13</td>
<td>---</td>
<td>---</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>2</td>
<td>---</td>
<td>2</td>
</tr>
<tr>
<td>'60 May 13~18</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>---</td>
</tr>
<tr>
<td>'60 May 18~23</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>'60 May 18~23</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>'60 May 18~23</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>'60 May 18~23</td>
<td>4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1954 Apr. 4~May 9</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>11</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>'60 May 13</td>
<td>---</td>
<td>---</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>2</td>
<td>---</td>
<td>2</td>
</tr>
<tr>
<td>'60 May 13~18</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>---</td>
</tr>
<tr>
<td>'60 May 18~23</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>'60 May 18~23</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>'60 May 18~23</td>
<td>4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Table 104. Composition of the sand used for the chlorinity test.

<table>
<thead>
<tr>
<th>Size of sand (mm)</th>
<th>Percentage</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sand (%)</td>
</tr>
<tr>
<td>2.0 <</td>
<td>30.45</td>
<td>41.40</td>
</tr>
<tr>
<td>2.0~1.5</td>
<td>15.57</td>
<td>56.25</td>
</tr>
<tr>
<td>1.5~1.25</td>
<td>13.46</td>
<td>66.78</td>
</tr>
<tr>
<td>1.25~1.0</td>
<td>16.64</td>
<td>81.76</td>
</tr>
<tr>
<td>1.0~0.5</td>
<td>22.71</td>
<td>93.98</td>
</tr>
<tr>
<td>0.5~0.25</td>
<td>1.16</td>
<td>98.00</td>
</tr>
<tr>
<td>0.25 ></td>
<td>0.02</td>
<td>100.00</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
<td>66.45</td>
</tr>
</tbody>
</table>

すなわち、塩素量9.89％では、10尾の供試魚のうち3尾死亡したが、その他では異常を認めなかった。第2回の実験では、高から城について検討したもので、塩素量28.70~29.63％では10尾の供試魚のうち7尾が死亡した。また第3回の実験では、低から城について検討したものであるが、塩素量2.86~3.21％では、供試魚の全部が死亡した。第104表は、1960年の実験に使用した砂の粒子組成を示す。

Table 104. Composition of the sand used for the chlorinity test.

<table>
<thead>
<tr>
<th>Size of sand (mm)</th>
<th>Percentage</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sand (%)</td>
</tr>
<tr>
<td>2.0 <</td>
<td>30.45</td>
<td>41.40</td>
</tr>
<tr>
<td>2.0~1.5</td>
<td>15.57</td>
<td>56.25</td>
</tr>
<tr>
<td>1.5~1.25</td>
<td>13.46</td>
<td>66.78</td>
</tr>
<tr>
<td>1.25~1.0</td>
<td>16.64</td>
<td>81.76</td>
</tr>
<tr>
<td>1.0~0.5</td>
<td>22.71</td>
<td>93.98</td>
</tr>
<tr>
<td>0.5~0.25</td>
<td>1.16</td>
<td>98.00</td>
</tr>
<tr>
<td>0.25 ></td>
<td>0.02</td>
<td>100.00</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
<td>66.45</td>
</tr>
</tbody>
</table>

イカナゴの塩素量に対する抵抗力はきわめて大きく、塩素量4.69~24.21％の広範囲に及ぶことが判明した。しかし第103表の下段に示した各実験濃度に対するイカナゴ魚体の体重は第129図に示すように、低からんでは増加し、高からんでは減少することがわかる。これは外界の滑離圧に対して、魚体の細胞膜の体液を調節できなくなったためであろう。したがって、イカナゴの塩素量変化に対する抵抗力は、8~23％とみなされるよう。
specimens employed for the chlorinity test.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4−6.6</td>
<td>6.6−6.8</td>
<td>6.8−7.0</td>
<td>6.2−7.4</td>
<td>6.4−7.6</td>
<td>7.6−7.8</td>
<td>Total number of specimen</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4−6.6</td>
<td>6.6−6.8</td>
<td>6.8−7.0</td>
<td>6.2−7.4</td>
<td>6.4−7.6</td>
<td>7.6−7.8</td>
<td>Total No.</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>51</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>

Fig. 129. Showing the change of fatness of the specimens employed for the chlorinity test.
Table 105. Amount of the oxygen consumption.

<table>
<thead>
<tr>
<th>Date (Time)</th>
<th>Water tank No.</th>
<th>Amount of oxygen</th>
<th>Mortality</th>
<th>Amount of oxygen consumed per specimen</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 6, 13:30</td>
<td>1</td>
<td>5.5223</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5.4849</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5.4368</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5.4938</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5.3966</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>1</td>
<td>4.1013</td>
<td></td>
<td>1.67678</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4.5345</td>
<td></td>
<td>1.10246</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.4843</td>
<td></td>
<td>1.12395</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4.6911</td>
<td></td>
<td>0.94719</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.1206</td>
<td></td>
<td>1.50568</td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td>1</td>
<td>3.1186</td>
<td></td>
<td>0.56957</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.8512</td>
<td></td>
<td>0.95148</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.5159</td>
<td></td>
<td>0.56167</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.2559</td>
<td></td>
<td>0.82662</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.8625</td>
<td></td>
<td>0.72970</td>
<td></td>
</tr>
<tr>
<td>13:00</td>
<td>1</td>
<td>2.0916</td>
<td></td>
<td>0.58539</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.9193</td>
<td></td>
<td>0.52186</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.2819</td>
<td></td>
<td>0.70338</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.2400</td>
<td></td>
<td>0.58476</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.9155</td>
<td></td>
<td>0.53979</td>
<td></td>
</tr>
<tr>
<td>14:00</td>
<td>1</td>
<td>1.5789</td>
<td>1/10</td>
<td>0.28711</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.4561</td>
<td></td>
<td>0.25476</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.6829</td>
<td></td>
<td>0.33544</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.7360</td>
<td></td>
<td>0.28224</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.6251</td>
<td></td>
<td>0.16262</td>
<td></td>
</tr>
<tr>
<td>15:00</td>
<td>1</td>
<td>1.3062</td>
<td>1/9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.1950</td>
<td>3/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.4342</td>
<td>1/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.4620</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.3196</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:00</td>
<td>1</td>
<td>1.1654</td>
<td>6/8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.1193</td>
<td>6/7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.3365</td>
<td>6/9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.1236</td>
<td>3/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.0160</td>
<td>5/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:00</td>
<td>1</td>
<td>1.1064</td>
<td>2/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.0062</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.2203</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.9375</td>
<td>3/7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.9995</td>
<td>4/5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Water tank No.</td>
<td>Amount of oxygen</td>
<td>Mortality</td>
<td>Amount of oxygen consumed per specimen</td>
<td>Remarks</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>------------------</td>
<td>-----------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>MAY 8, 10:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5.5414</td>
<td>---</td>
<td></td>
<td>1 Cl 19.88</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5.3800</td>
<td>---</td>
<td></td>
<td>2 ν 18.74</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5.5490</td>
<td>---</td>
<td></td>
<td>3 ν 17.58</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5.4169</td>
<td>---</td>
<td></td>
<td>4 ν 16.70</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5.4552</td>
<td>---</td>
<td></td>
<td>5 ν 15.78</td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4.7231</td>
<td>1.93119</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4.8423</td>
<td>1.26897</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.8281</td>
<td>1.70132</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4.7810</td>
<td>1.50072</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4.7309</td>
<td>1.70935</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.8377</td>
<td>1.02706</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4.3298</td>
<td>0.59450</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.5257</td>
<td>0.35078</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3.8983</td>
<td>1.02393</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3.7411</td>
<td>1.14817</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.2659</td>
<td>0.64257</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.8546</td>
<td>0.53033</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.7046</td>
<td>0.93605</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3.3849</td>
<td>0.58208</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3.3622</td>
<td>0.43195</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.8267</td>
<td>0.49414</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.2926</td>
<td>0.64064</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.1674</td>
<td>0.60166</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.8646</td>
<td>0.59274</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2.8055</td>
<td>0.62350</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.3254</td>
<td>0.55143</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.7934</td>
<td>0.54912</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.6754</td>
<td>0.54120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.2164</td>
<td>0.71302</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2.6747</td>
<td>0.14308</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.0095</td>
<td>0.34117</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.4098</td>
<td>0.41429</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.3505</td>
<td>0.35089</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.9260</td>
<td>0.31363</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2.4459</td>
<td>0.24710</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.2812</td>
<td>0.38600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.7930</td>
<td>0.32690</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.8052</td>
<td>0.28101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.3909</td>
<td>0.29380</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.7674</td>
<td>0.35961</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.1530</td>
<td>2/5</td>
<td></td>
<td>0.06666</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.3297</td>
<td>1/5</td>
<td></td>
<td>0.24092</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.4264</td>
<td>0.19531</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.1101</td>
<td>2/5</td>
<td></td>
<td>0.14602</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.1927</td>
<td>0.29884</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.5955</td>
<td>2/3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.1038</td>
<td>1/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.0848</td>
<td>2/5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.0006</td>
<td>2/3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.9071</td>
<td>4/5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.8433</td>
<td>1/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.9562</td>
<td>1/3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.0397</td>
<td>2/3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.9796</td>
<td>1/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.8620</td>
<td>1/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.9 01:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.9323</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.9387</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.9654</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.8861</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.8664</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
第1回の実験は5月6日、第2回の実験は5月8日に開始し、各水槽に収容した個体数、体長および体重は第106表の通りである。

<table>
<thead>
<tr>
<th>Water-tank No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1957 May6.</td>
<td>B.L.</td>
<td>B.W.</td>
<td>B.L.</td>
<td>B.W.</td>
<td>B.L.</td>
</tr>
<tr>
<td>1</td>
<td>7.42</td>
<td>1.41</td>
<td>7.48</td>
<td>1.46</td>
<td>7.47</td>
</tr>
<tr>
<td>2</td>
<td>7.10</td>
<td>1.20</td>
<td>7.00</td>
<td>1.28</td>
<td>7.55</td>
</tr>
<tr>
<td>3</td>
<td>6.90</td>
<td>1.17</td>
<td>7.80</td>
<td>1.75</td>
<td>6.89</td>
</tr>
<tr>
<td>4</td>
<td>7.04</td>
<td>1.19</td>
<td>7.19</td>
<td>1.30</td>
<td>7.15</td>
</tr>
<tr>
<td>5</td>
<td>6.79</td>
<td>0.94</td>
<td>6.57</td>
<td>0.95</td>
<td>6.96</td>
</tr>
<tr>
<td>6</td>
<td>7.09</td>
<td>1.08</td>
<td>7.51</td>
<td>1.53</td>
<td>7.03</td>
</tr>
<tr>
<td>7</td>
<td>7.51</td>
<td>1.48</td>
<td>6.90</td>
<td>1.11</td>
<td>6.80</td>
</tr>
<tr>
<td>8</td>
<td>6.73</td>
<td>1.05</td>
<td>6.88</td>
<td>1.10</td>
<td>7.00</td>
</tr>
<tr>
<td>9</td>
<td>6.89</td>
<td>1.13</td>
<td>7.00</td>
<td>1.06</td>
<td>6.98</td>
</tr>
<tr>
<td>10</td>
<td>6.69</td>
<td>0.97</td>
<td>8.60</td>
<td>2.45</td>
<td>6.77</td>
</tr>
<tr>
<td>Average</td>
<td>7.016</td>
<td>1.162</td>
<td>7.293</td>
<td>1.399</td>
<td>7.060</td>
</tr>
</tbody>
</table>

Table 106. Body length and body weight of the specimens employed for the experiment on oxygen consumption.

実験結果

実験結果は第105表に示す通りで、第1回の実験では酸素量が2 ml/l 以下に減少すると危険となり、1 時間1尾当たりの酸素消費量も0.3ml以下に低下する。また第2回の実験でも、酸素量が2 ml/l 以下に低下したばあいにはイカナゴは死亡することを示している。第130図は第105表を図示したものである。

同様の水槽に5尾放飼したばあいの酸素消費量と、10尾放飼したばあいの酸素消費量では、1尾当たり酸素消費量に差はほとんど認められず、5尾放飼したばあいには、10尾放飼したばあいの2倍生存期間が延びた。また1時間当たりの酸素消費量は、実験開始直後では大きく1 ml以上を示すが、遊泳運動が止ま、活動が平穏になると0.6ml程度に減少する。また Cl 15.42 〜 19.95 % の範囲の変化による致死時間の影響はほとんど認められなかった。

1961年7月 水島湾（岡山県）：1967年7月 荒瀬（愛媛県）で底曳網漁獲物中に大量のイカナゴ死魚が発見され、その原因調査を依頼されたが調査できなかった。しかし、これらの状況には2つの共通点がみられる。すなわち、1961年は備讃瀬戸群の大豊漁年、1967年は芸予群の大豊漁年に当たり、魚体（0才魚）はい
Fig. 130. Hourly change of oxygen consumption by sand-lance. Solid line, 5 specimens employed; broken line, 10 specimens employed.

ずれも小型である。また死魚発見の時期は、両年とも 7 月である。このように寒冷期以外で自然死亡魚がみられるのは特異な現象で、イカナゴの特殊な夏眠生態によるところが大きいと思われる。いずれにしても、このような現象は過密生息による酸素の欠乏が最大の原因と推察される。

第24節 食 養 畜 講 試 験

イカナゴは魚食性魚類の飼料として、重要なものである。1954年4月29日から室内における飼育蓄養実験を行ない、無投餌によるイカナゴの生存日数を調査した。

実験方法

直径29cm、高さ17cmの円形ガラス水槽に海水4ℓ、イカナゴ生息地の砂3ℓを入れ、これにイカナゴ10尾を放養して、每日1回換水し、午前5時から午後10時まで8〜10回水温および生息状況を観察した。

実験結果

実験結果を要約して第107表に示す。

供試魚10尾の死亡は放養後38日目に始まり、72日で全部死亡した。第131図は、換水した海水について午前10時の沿岸定時観測結果から水温および比重の変化を示す。

最初に供試魚が死亡した6月5日の室内水温は、最高23.2℃であった。第131図から沿岸海水の水温、比重について検討すれば、6月28日以前では、5月7、28日両日に比重の低下が著しいが、それ以外では、23.00〜24.00で目だった変化は認められない。水温は、6月5日に急激な上昇を示した。夏眠イカナゴ調査において、底層水温が23.9℃であったことから推定すると、室内の実験水槽の水温が急上昇したことが直接の死因と断定することはできない。したがって飼育蓄養は、大体40日が限度と思われる。第108表は、死亡魚の体長、体重、肥満度を示したもので、これによると実験開始前の魚体肥満度を4.00とすれば、供試魚は飼育蓄養の結果、肥満度は約半分の2.00となったことがわかる。

—199—
Table 107. Results of starving experiment of sand-lance.

<table>
<thead>
<tr>
<th>Date</th>
<th>Apr. 29</th>
<th>30</th>
<th>May 1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. T. (°C)</td>
<td>15.0–15.1</td>
<td>13.6–18.8</td>
<td>14.9–21.6</td>
<td>17.4–21.8</td>
<td>16.5–17.7</td>
<td>15.7–19.7</td>
<td>13.4–17.7</td>
<td>14.5–16.9</td>
<td>16.0–20.6</td>
<td>16.4–22.9</td>
<td>17.6–20.6</td>
<td>14.4–17.6</td>
</tr>
<tr>
<td>No. of dead specimens</td>
<td>24.71</td>
<td>24.53</td>
<td>24.76</td>
<td>24.34</td>
<td>24.74</td>
<td>24.06</td>
<td>24.40</td>
<td>24.56</td>
<td>20.81</td>
<td>23.20</td>
<td>23.34</td>
<td>24.08</td>
</tr>
</tbody>
</table>

Date												
Date	11	12	13	14	15	16	17	18	19	20	21	22
W. T. (°C)	16.0–20.0	17.0–20.9	17.6–21.3	17.6–19.2	16.9–18.9	15.7–18.2	17.1–20.2	18.1–19.8	19.3–20.0	18.6–20.5	17.8–19.4	
No. of dead specimens	23.82	24.57	24.57	24.18	23.80	24.60	23.58	24.08	23.96	23.72	22.99	21.91

Date	23	24	25	26	27	28	29	30	31	June 1	2	3
W. T. (°C)	16.7–20.7	18.6–20.6	19.5–20.9	17.6–20.6	16.0–19.2	17.2–22.1	19.0–22.7	19.5–22.4	18.9–22.5	17.8–21.6	18.7–20.5	18.6–20.7
No. of dead specimens	22.02	22.17	22.48	19.33	23.34	23.34	23.49	23.71	23.69	23.82	23.74	23.52

Date	4	5	6	7	8	9	10	11	12	13	14	15
W. T. (°C)	17.1–22.0	19.2–23.2	20.4–20.8	19.9–22.0	18.5–19.9	18.4–19.9	18.8–20.0	18.8–21.8	18.4–22.1	19.8–23.4	19.4–21.1	19.6–22.8
No. of dead specimens	23.35	23.13	23.30	23.31	23.33	23.32	23.21	22.93	24.99	23.04	23.71	23.89

Date	16	17	18	19	20	21	22	23	24	25	26	27
W. T. (°C)	18.8–23.7	20.2–24.5	20.0–24.6	21.0–22.0	20.7–24.5	19.6–24.0	19.9–21.6	19.3–23.0	20.4–23.1	20.6–22.5	20.7–22.0	21.0–23.6
No. of dead specimens	23.51	23.53	23.33	22.96	23.45	23.04	23.33	22.63	22.77	22.97	23.80	22.79

| Date | 28 | 29 | 30 | July 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| W. T. (°C) | 22.2–24.2 | 22.3–24.0 | 21.9–24.2 | 22.7–25.0 | 21.1–23.3 | 22.4–25.0 | 22.6–23.0 | 22.2–23.2 | 22.6–24.0 | 22.0–23.3 | 22.3–25.6 | 24.1 |
Fig. 131. Daily changes of the temperature and specific gravity of sea water used for starving experiment at its original area. Water temperature (°C), broken line: specific gravity, solid line.

Table 108. Body length, body weight and fatness of the specimens immediately after death.

<table>
<thead>
<tr>
<th>Date</th>
<th>B. L (cm)</th>
<th>B. W (g)</th>
<th>Fatness</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 5</td>
<td>5.09</td>
<td>0.29</td>
<td>2.199</td>
</tr>
<tr>
<td>June 12~17</td>
<td>5.95</td>
<td>0.42</td>
<td>1.994</td>
</tr>
<tr>
<td></td>
<td>6.55</td>
<td>0.53</td>
<td>1.886</td>
</tr>
<tr>
<td></td>
<td>5.82</td>
<td>0.34</td>
<td>1.725</td>
</tr>
<tr>
<td></td>
<td>6.01</td>
<td>0.38</td>
<td>1.750</td>
</tr>
<tr>
<td>June 22</td>
<td>5.46</td>
<td>0.36</td>
<td>2.212</td>
</tr>
<tr>
<td>June 23</td>
<td>6.10</td>
<td>0.44</td>
<td>1.938</td>
</tr>
<tr>
<td>July 4</td>
<td>5.78</td>
<td>0.41</td>
<td>2.123</td>
</tr>
<tr>
<td>July 7</td>
<td>6.52</td>
<td>0.61</td>
<td>2.201</td>
</tr>
<tr>
<td>July 9</td>
<td>7.30</td>
<td>1.16</td>
<td>2.982</td>
</tr>
</tbody>
</table>

第25節 集魚実験

イカナゴが光に対して集まるとは、集魚燈による漁法があることによってもわかる。1959年4月15日愛媛県壱岐、1964年4月6日福島県三原水道、1968年4月10日三原水道小佐木状東部、壱岐においてイカナゴの光に対する行動を観察した。

調査方法

集魚燈は6V20Wで、これを水中に設ける程度に設け、途中にはバッテリーを使用した。点滅時間は1時間とし、集まった魚は手網で採捕した。

調査結果

第109表に調査結果を示す。

第132図は、集魚燈の明るさを示す。集魚燈の明るさは、実験開始時と終了時では異なり、また観測日の現状によっても異なる。
Table 109. Results of the experiment for attractive effect of fish lamp on sand-lance.

<table>
<thead>
<tr>
<th>Place of experiment</th>
<th>Date</th>
<th>Time of lighting</th>
<th>No. of sand-lance caught</th>
<th>No. of other fish caught</th>
<th>Remarks</th>
<th>Weather</th>
<th>Dir. of wind</th>
<th>Vel. of wind</th>
<th>A.T. (°C)</th>
<th>W.T. (°C)</th>
<th>Chlorinity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toyo-shima</td>
<td>1959 Apr. 15</td>
<td>23:00~24:00</td>
<td>0</td>
<td>0</td>
<td>92 Rux</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>13.2</td>
<td>18.28</td>
<td></td>
</tr>
<tr>
<td>(Ehime Pref.)</td>
<td></td>
<td>24:00~1:00</td>
<td>0</td>
<td>0</td>
<td>62</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2:00~3:30</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hashiri-shima</td>
<td>1964 Apr. 6</td>
<td>19:30~20:30</td>
<td>1</td>
<td>2</td>
<td>r</td>
<td>NE</td>
<td>1</td>
<td>18.3</td>
<td>12.6</td>
<td>18.07</td>
<td></td>
</tr>
<tr>
<td>(Hiroshima Pref.)</td>
<td></td>
<td>21:30~22:30</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>23:30~0:30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3:30~4:30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hosono-su Sasa-shima</td>
<td>1964 Apr. 8</td>
<td>19:00~22:00</td>
<td>0</td>
<td>0</td>
<td>c</td>
<td>NE</td>
<td>1</td>
<td>12.4</td>
<td>11.8</td>
<td>18.13</td>
<td></td>
</tr>
<tr>
<td>Sasa-shima</td>
<td></td>
<td>23:00~24:00</td>
<td>85</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0:00~2:00</td>
<td>63</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3:00~4:00</td>
<td>175</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kosaki-shima</td>
<td>1964 Apr. 10</td>
<td>20:00~21:00</td>
<td>16</td>
<td>13</td>
<td>r</td>
<td>E</td>
<td>1</td>
<td>13.0</td>
<td>11.8</td>
<td>17.87</td>
<td></td>
</tr>
<tr>
<td>Sasa-shima</td>
<td></td>
<td>21:50~23:00</td>
<td>146</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:00~2:00</td>
<td>27</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3:00~4:00</td>
<td>12</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 122. Underwater changes of the illumination of the fish lamp.
第3章

備後灘およびその周辺海域におけるイカナゴ稚仔の分散と環境について

本章は第2章の生態学的諸研究に基づくイカナゴ漁況調整の実施経過について述べる。すなわち、イカナゴに関する研究目標の1つは漁況を予知することで、このために必要で基本的な生態の諸様相については、前章で触れた。これに基づいて本章では、海洋における稚仔の発生、分散および漁況について、年々の推移を比較検討した。

第1節 稚仔の分散

MEEK, A. (1916)は、A. americanusの回遊について、孵化後体長1 cmごろまでは海底にとどまりが、その後次第に上昇し、体長1.5 cmに達すると漂流生活を送り、体長3 cmになると再び中層生活をするようになる。また夏期には沿岸部に接近し、冬期には深層に退避すると述べた。

筆者らは、A. personatusの分布について、1959年1月より漁況予知のために定点観測を開始した。第133回は、1959年1～2月の観測定点で、同年3月以降は南北の観測線のうち約半分の観測を中止し、1964年3月まで第110回のように海洋観測を実施した。

Table 110. List of observations carried out.

<table>
<thead>
<tr>
<th>Cruise No.</th>
<th>Date</th>
<th>No. of st.</th>
<th>Remarks</th>
<th>Cruise No.</th>
<th>Date</th>
<th>No. of st.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>'59 Jan.</td>
<td>9-28</td>
<td>79</td>
<td>39</td>
<td>Dec. 11-15</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Mar. 10-17</td>
<td>83</td>
<td></td>
<td>41</td>
<td>Jan. 4-6</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Apr. 20-22</td>
<td>50</td>
<td></td>
<td>42</td>
<td>Jan. 10-12</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>May 19-22</td>
<td>68</td>
<td></td>
<td>43</td>
<td>Jan. 16-26</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>June 22-26</td>
<td>81</td>
<td></td>
<td>44</td>
<td>Jan,31-Feb.2</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>July 20-24</td>
<td>69</td>
<td></td>
<td>45</td>
<td>Feb. 7-23</td>
<td>182</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Aug. 17-20</td>
<td>68</td>
<td></td>
<td>46</td>
<td>Mar. 12-15</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Sep. 14-19</td>
<td>68</td>
<td></td>
<td>47</td>
<td>Apr. 17-20</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Oct. 19-23</td>
<td>66</td>
<td></td>
<td>48</td>
<td>May 21-23</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Nov. 16-18</td>
<td>68</td>
<td></td>
<td>49</td>
<td>June 5-17</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Dec. 15-18</td>
<td>67</td>
<td></td>
<td>50</td>
<td>June 26-27</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>'60 Jan. 18-22</td>
<td>59</td>
<td></td>
<td>51</td>
<td>July 16-18</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Feb. 15-19</td>
<td>81</td>
<td></td>
<td>52</td>
<td>Aug. 20-23</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Mar. 14-18</td>
<td>81</td>
<td></td>
<td>53</td>
<td>Sep. 17-19</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Apr. 26-28</td>
<td>39</td>
<td></td>
<td>54</td>
<td>Dec. 17-27</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>May 24-27</td>
<td>39</td>
<td></td>
<td>55</td>
<td>'63 Jan. 7-9</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>June 20-23</td>
<td>39</td>
<td></td>
<td>56</td>
<td>Jan. 14-24</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>July 18-20</td>
<td>57</td>
<td></td>
<td>57</td>
<td>'63 Jan,31-Feb.2</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Aug. 22-25</td>
<td>39</td>
<td></td>
<td>58</td>
<td>Feb. 6-8</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Sep. 19-22</td>
<td>51</td>
<td></td>
<td>59</td>
<td>Feb. 11-15</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Oct. 24-25</td>
<td>49</td>
<td></td>
<td>60</td>
<td>Feb. 20-22</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Nov. 15-18</td>
<td>51</td>
<td></td>
<td>61</td>
<td>Feb,28-Mar.2</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Dec. 19-21</td>
<td>39</td>
<td></td>
<td>62</td>
<td>Mar. 6-8</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>'61 Jan. 16-19</td>
<td>53</td>
<td></td>
<td>63</td>
<td>Mar. 11-15</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Feb. 3</td>
<td>12</td>
<td></td>
<td>64</td>
<td>Apr. 10-12</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Feb. 13-15</td>
<td>74</td>
<td></td>
<td>65</td>
<td>May 8-10</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Feb. 23</td>
<td>12</td>
<td></td>
<td>66</td>
<td>June 17-19</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Mar. 7</td>
<td>12</td>
<td></td>
<td>57</td>
<td>July 17-19</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Mar. 14-18</td>
<td>80</td>
<td></td>
<td>59</td>
<td>Aug. 19-21</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Apr. 17-20</td>
<td>51</td>
<td></td>
<td>69</td>
<td>Sep. 17-19</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>May 22-25</td>
<td>51</td>
<td></td>
<td>70</td>
<td>Oct. 15-17</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>June 12-15</td>
<td>51</td>
<td></td>
<td>71</td>
<td>Nov. 18-20</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>July 10-13</td>
<td>51</td>
<td></td>
<td>72</td>
<td>Dec. 16-18</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Aug. 7-10</td>
<td>51</td>
<td></td>
<td>73</td>
<td>'64 Jan. 18-23</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Sep. 11-13</td>
<td>49</td>
<td></td>
<td>74</td>
<td>Feb. 14-19</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Oct. 9-12</td>
<td>49</td>
<td></td>
<td>75</td>
<td>Mar. 17-21</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Nov. 7-9</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
さきに宮村・杉野（1959）は伊勢湾のイカナゴ稚魚分布について、稚仔の分布密度ならびに体長組成の様相から、イカナゴの産卵場を伊勢湾入り口部と推定し、イカナゴ稚仔の移動について述べた。しかし採集方法について、(1)垂直採集であること、(2)観測水が測定されていないこと、(3)定点が設定されていないことなどが指摘される。

筆者らは前章に述べたように、稚仔遊泳層の調査を行なって採集方法を検討した後、本調査に着手したのであるが、稚仔分散の範囲は最初予期した海域よりも広く、調査海域の拡大に伴い定点面を半減して短時間で広域調査を実施することとした。

Fig. 138. Map showing the station established in the Bingo Nada and its vicinities.

調査方法

定点観測は、毎月中旬に行なうことを原則とし、観測項目は年または月によって多少変化はあるが、一般的海洋調査とイカナゴ稚仔調査とに大別される。

一般的海洋調査では、常法にしたがい水温、塩分、透明度の観測と plankton 縦方向採集を行なう。また時により照度、温度調査を同時に実施した。網目 XX13 で採集した plankton は 20%フォルマリン固定し、沈降量ならびに排水量を測定した。

イカナゴ稚仔調査は、初め 1 月行なうが、雲完式 plankton net（網目 XX13）で水深 5 m 層を水平引きして行ったが、3 月ではイカナゴ稚仔はほとんど採集できないので、1961年以後は 3 月調査を中止した。なお前節の調査ではイカナゴ稚仔の遊泳水深は 6 ～ 8 m であったが、推定した調査地点には浅所があること、月に枝魚帯があるため、採集標本は 5 m に統一した。

第一項 稚仔の分布

第 134 図は、1959年 1 月 9 日から 2 月 13 日まで調査したイカナゴ稚仔の分布を示す。

この調査は最初のイカナゴ稚仔分布調査であり、はじめに述べたように当初予想した海域よりも稚仔分布が広範囲であったため、調査海域を順次拡大したので調査期間はかなり長期に及んだ。第 134 図について、
Fig. 134. The number of larval sand-lance per m² at each station, collected during the period from January 9 to February 13, 1959.

Fig. 135. The average body length of larval sand-lance at each station, collected during the period from January 9 to February 13, 1959. Unit: cm.
第136、137図は、1960年1月および2月のイカナギ稚仔分布を示したもので、第138、139図は、これら採集稚仔の月別平均体長を定点ごとに示したものである。

Fig. 136. The number of larval sand-lance per m³ at each station, collected during the period of January 18-22, 1960.

Fig. 137. The number of larval sand-lance per m³ at each station, collected during the period of February 15-19, 1960.
Fig. 138. The average body length of larval sand-lance at each station, collected during the period of January 18-22, 1960. Unit, the same as in Fig. 135.

Fig. 139. The average body length of larval sand-lance at each station, collected during the period of February 15-19, 1960. Unit, the same as in Fig. 135.
第136図では、第134図とほぼ同様にイカナゴ稚仔濃密群は、備後灘西部にみられ、さらに他の1群が香川県三崎付近にみられた。また第137図から、1月のイカナゴ稚仔濃密群はほとんど消滅して、魚群の中心は備後灘東部走島付近に移動することがわかる。同様な経過は第138、139図に示した月別イカナゴ稚仔平均体長の推移からも容易に推察できる。ただし1960年2月使用したPlankton netの網目はGG40であった。

第140、141図は、それぞれ1961年1月および2月のイカナゴ稚仔分布を示したもので、第142、143図は、月別平均体長を示す。

1961年1月は、定点56〜157以東の観測を中止したが、その理由は前年1月のイカナゴ稚仔分布が、この線以東には少なかったためである。第140、141図からイカナゴ稚仔分布の模様を見ると、1月では備後灘西部に濃密群が出現し、2月では傾全体に分散する。また前年度と比較して標相の異なるのは2月の分布図に示す通り、イカナゴ稚仔が集積できなかった海域が、備後灘のやや東部寄りに南北に続走することである。これによって備後灘には、2つのイカナゴ稚仔群の存在が推測され、また第143図からも2月の各定点別平均体長は、備後灘西部と香川県三崎付近に稚仔群の存在を推定させる。

第144、145図は、1962年1月および2月のイカナゴ稚仔分布で、第146、147図は1月、2月の各定点別平均体長を示す。

Fig. 140. The number of larval sand-lance per m³ at each station, collected during the period of January 16-19, 1961.
Fig. 141. The number of larval sand-lance per m3 at each station, collected during the period of February 13-15, 1961.

Fig. 142. The average body length of larval sand-lance at each station, collected during the period of January 16-19, 1961. Unit, the same as in Fig. 135.
Fig 143. The average body length of larval sand-lance at each station, collected during the period of February 13-15, 1961. Unit, the same as in Fig 135.

Fig 144. The number of larval sand-lance per m³ at each station, collected during the period of January 16-21, 1962.
Fig. 145. The number of larval sand-lance per m3 at each station, collected during the period of February 12-16, 1962.

Fig. 146. The average body length of larval sand-lance at each station, collected during the period of January 16-21, 1962. Unit, the same as in Fig. 135.
Fig. 147. The average body length of larval sand-lance at each station, collected during the period of February 12-16, 1962. Unit, the same as in Fig. 135.

1962年のイカナゴ稚仔の分布様相は、1960, 1961年の各年にみられた分布とはほぼ同様であるが、雑菌顧西部にみられる1月の濃密群が従来と分布の濃淡を異分異にし、三原水道一帯と四阪島周辺とに2分され、雑菌顧西部群は2群とみなされる。ここで注意されるのは、移動の方向や雑菌顧南部を東進する傾向が従来と異なる。

第148, 149図は、1963年1月および2月のイカナゴ稚仔分布。第150, 151図は、1月と2月の定点測平均体長を示したものである。1963年1月は、異状寒波の来襲で速日風波強く、雑菌顧中央部の定点観測はやむなく中止した。
Fig. 148. The number of larval sand-lance per m³ at each station, collected during the period of January 14–23, 1963.

Fig. 149. The number of larval sand-lance per m³ at each station, collected during the period of February 11–15, 1963.
Fig. 150. The average body length of larval sand-lance at each station, collected during the period of January 14-23, 1963. Unit, the same as in Fig. 135.

Fig. 151. The average body length of larval sand-lance at each station, collected during the period of February 11-15, 1963. Unit, the same as in Fig. 135.
第148, 149図から1963年のイカナゴ稚仔の分布を1959〜1962年の調査結果と比較すると、これらの年よりも多くの稚仔が採捕され、また2月の稚仔の分布は、漁場域に濃密な分布を示す。しかしイカナゴ稚仔の平均体長は著しく小さい。すなわち、異状寒波のためイカナゴ稚仔は、漁場域に広く分散されたが、水温低下によるイカナゴ稚仔の豊富さ（寒仔と春仔）と、孵化期の遅延ならびに飼料不足による成長の低下などの現象がみられる。

第152, 153図は、1964年1月および2月のイカナゴ稚仔分布。第154, 155図は1月、2月の定点別平均体長を示す。

Fig. 152. The number of larval sand-lance per m³ at each station, collected during the period of January 18-23, 1964.
Fig. 153. The number of larval sand-lance per m3 at each station, collected during the period of February 14-19, 1964.

Fig. 154. The average body length of larval sand-lance at each station, collected during the period of January 18-23, 1964. Unit, the same as in Fig. 135.
Fig. 155. The average body length of larval sand-lance at each station, collected during the period of February 14-19, 1964. Unit, the same as in Fig. 135.

第152、153図によってイカナゴ稚仔の採捕数をみると、備後灘西部に濃密群が三原水道と、四阪島付近の2箇所にみられ、1962年の分布に似る。1964年は暖冬年といわれ産卵期はかなり遅れたが、第154、155図からもわかるように、魚体はきわめて小型である。そこで注意を要することは、分布が灘西部に局限されていることで、従来と異にする。すなわち、西寄りの季節風が弱いため、イカナゴ稚仔の分布は著しく阻害された。

以上述べた1959年以降のイカナゴ稚仔調査結果から次の事項が推定される。

1. 備後灘およびその周辺におけるイカナゴの産卵場所は、(1)三原水道 (2)四阪島北西部 (3)香川県三崎付近（1965年の調査で備讃灘状一帯と判明）の3箇所である。

2. イカナゴ稚仔の分布は、A. tobianus と同様湖流によって移動するが、年によって備後灘西部のイカナゴ稚仔は進路を異にし、(1)備後灘北部 (2)備後灘中央部 (3)備後灘南部のいずれかを東進し、他方、香川県三崎付近のイカナゴ稚仔は、福山市東島方面に向って北上する。

3. イカナゴ稚仔の分布は、風力と風向によって変化する。このことは特に1963、1964年のイカナゴ稚仔の分布にみられる現象で、1963年は強風、1964年は弱風で1963年の異状分散は風力、風向の影響の強さを物語る。最近、渋田（1966）は福井灘。大阪灘におけるイカナゴ発生変動に関する研究所で、1960〜1965年の稚魚の分布と季節変化：産卵期前後の海気象との関係について報告し、稚魚の出現は、早い年で12月下旬、遅い年で1月中旬であり、この時期の採集域は産卵場近辺に限られること、稚仔の分布は産卵期の遅延、短縮、あるいは産卵量によって異った型を示すが、拡散の方向には、年の間で相似性が認められること、当才魚の漁獲量は、水温が12月〜1月に大きく、産卵期後（20日間）の冬期偏西風日数との間には、

いずれにしても備後灘周辺におけるイカナゴ稚仔の分布と分散の模様が明らかとなった。なお1965年1、2月の協同調査から、香川県三崎付近の産卵群は備讃畳産卵群の一部であることが判明した。
第2項 稚仔採捕数と体長

イカナゴの養殖が産卵期の水温によって幾分推定できることはすでに述べた。また、さきの第134-155図には、1959年から1964年までの1月と2月とのイカナゴ稚仔の定点測定採捕数と平均体長を示した。1960年から1965年までのイカナゴ稚仔採捕数について、各年ごとに1月と2月との増点が一致する全定点を集計すると第111表の通りである。但し1965年資料は参考のため引用した。

Table 111. Yearly variation of the number of larval sand-lance collected by plankton net and its comparison between January and February.

<table>
<thead>
<tr>
<th>Date</th>
<th>No. of the larval sand-lance collected</th>
<th>Feb./Jan. × 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>Jan.</td>
<td>79,96</td>
</tr>
<tr>
<td></td>
<td>Feb.</td>
<td>18,28</td>
</tr>
<tr>
<td>'61</td>
<td>Jan.</td>
<td>81,74</td>
</tr>
<tr>
<td></td>
<td>Feb.</td>
<td>7,88</td>
</tr>
<tr>
<td>'62</td>
<td>Jan.</td>
<td>92,83</td>
</tr>
<tr>
<td></td>
<td>Feb.</td>
<td>53,96</td>
</tr>
<tr>
<td>'63</td>
<td>Jan.</td>
<td>241,75</td>
</tr>
<tr>
<td></td>
<td>Feb.</td>
<td>105,57</td>
</tr>
<tr>
<td>'64</td>
<td>Jan.</td>
<td>330,28</td>
</tr>
<tr>
<td></td>
<td>Feb.</td>
<td>25,67</td>
</tr>
<tr>
<td>'65</td>
<td>Jan.</td>
<td>47,31</td>
</tr>
<tr>
<td></td>
<td>Feb.</td>
<td>292,71</td>
</tr>
</tbody>
</table>

これによると、1960、1961、1962、1964年では、1月の稚仔採捕数が2月を上回るが、1963、1965年では逆に2月が1月を上回る。これら6年間の-paid海域におけるイカナゴ漁獲量は、1963、1965年に豊漁で、2月の稚仔採捕数の増加は春仔の添加を物語る。

第112表は、各年の水平引きで採捕したイカナゴ稚仔の月別平均体長を示し、第156図は、体長組成の百分率を示す。

－218－
Table 112. Yearly changes of the body length composition of larval sand-lance and its mean value, standard deviation and coefficient of variation.

| Date | B.L. (cm) | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 | 1.7 | 1.8 | 1.9 | Total | A. V. | S. D. | C. V. |
|--------------|-----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|-------|-------|-------|
| 1959 JanFeb | | 114 | 141 | 46 | 77 | 33 | 7 | 5 | 0 | 1 | | | | | | | | | | 988 | 37.096±0.636 |
| '60 Jan | | 2 | 655 | 278 | 35 | 7 | 0 | 0 | 0 | 0 | 1 | | | | | | | | | 978 | 17.217±0.270 |
| | | 2 | 655 | 278 | 35 | 7 | 0 | 0 | 0 | 0 | 1 | | | | | | | | | 978 | 17.217±0.270 |
| | | 2 | 655 | 278 | 35 | 7 | 0 | 0 | 0 | 0 | 1 | | | | | | | | | 978 | 17.217±0.270 |
| | | 2 | 655 | 278 | 35 | 7 | 0 | 0 | 0 | 0 | 1 | | | | | | | | | 978 | 17.217±0.270 |
| | | 2 | 655 | 278 | 35 | 7 | 0 | 0 | 0 | 0 | 1 | | | | | | | | | 978 | 17.217±0.270 |
| | | 2 | 655 | 278 | 35 | 7 | 0 | 0 | 0 | 0 | 1 | | | | | | | | | 978 | 17.217±0.270 |
| | | 2 | 655 | 278 | 35 | 7 | 0 | 0 | 0 | 0 | 1 | | | | | | | | | 978 | 17.217±0.270 |
| | | 2 | 655 | 278 | 35 | 7 | 0 | 0 | 0 | 0 | 1 | | | | | | | | | 978 | 17.217±0.270 |
| | | 2 | 655 | 278 | 35 | 7 | 0 | 0 | 0 | 0 | 1 | | | | | | | | | 978 | 17.217±0.270 |
| | | 2 | 655 | 278 | 35 | 7 | 0 | 0 | 0 | 0 | 1 | | | | | | | | | 978 | 17.217±0.270 |
| | | 2 | 655 | 278 | 35 | 7 | 0 | 0 | 0 | 0 | 1 | | | | | | | | | 978 | 17.217±0.270 |
| | | 2 | 655 | 278 | 35 | 7 | 0 | 0 | 0 | 0 | 1 | | | | | | | | | 978 | 17.217±0.270 |
| | | 2 | 655 | 278 | 35 | 7 | 0 | 0 | 0 | 0 | 1 | | | | | | | | | 978 | 17.217±0.270 |
| | | 2 | 655 | 278 | 35 | 7 | 0 | 0 | 0 | 0 | 1 | | | | | | | | | 978 | 17.217±0.270 |
| | | 2 | 655 | 278 | 35 | 7 | 0 | 0 | 0 | 0 | 1 | | | | | | | | | 978 | 17.217±0.270 |
| | | 2 | 655 | 278 | 35 | 7 | 0 | 0 | 0 | 0 | 1 | | | | | | | | | 978 | 17.217±0.270 |
| | | 2 | 655 | 278 | 35 | 7 | 0 | 0 | 0 | 0 | 1 | | | | | | | | | 978 | 17.217±0.270 |
| | | 2 | 655 | 278 | 35 | 7 | 0 | 0 | 0 | 0 | 1 | | | | | | | | | 978 | 17.217±0.270 |
| | | 2 | 655 | 278 | 35 | 7 | 0 | 0 | 0 | 0 | 1 | | | | | | | | | 978 | 17.217±0.270 |
| | | 2 | 655 | 278 | 35 | 7 | 0 | 0 | 0 | 0 | 1 | | | | | | | | | 978 | 17.217±0.270 |
| | | 2 | 655 | 278 | 35 | 7 | 0 | 0 | 0 | 0 | 1 | | | | | | | | | 978 | 17.217±0.270 |
| | | 2 | 655 | 278 | 35 | 7 | 0 | 0 | 0 | 0 | 1 | | | | | | | | | 978 | 17.217±0.270 |
| | | 2 | 655 | 278 | 35 | 7 | 0 | 0 | 0 | 0 | 1 | | | | | | | | | 978 | 17.217±0.270 |
| | | 2 | 655 | 278 | 35 | 7 | 0 | 0 | 0 | 0 | 1 | | | | | | | | | 978 | 17.217±0.270 |
| | | 2 | 655 | 278 | 35 | 7 | 0 | 0 | 0 | 0 | 1 | | | | | | | | | 978 | 17.217±0.270 |
| | | 2 | 655 | 278 | 35 | 7 | 0 | 0 | 0 | 0 | 1 | | | | | | | | | 978 | 17.217±0.270 |
| | | 2 | 655 | 278 | 35 | 7 | 0 | 0 | 0 | 0 | 1 | | | | | | | | | 978 | 17.217±0.270 |
| | | 2 | 655 | 278 | 35 | 7 | 0 | 0 | 0 | 0 | 1 | | | | | | | | | 978 | 17.217±0.270 |
| | | 2 | 655 | 278 | 35 | 7 | 0 | 0 | 0 | 0 | 1 | | | | | | | | | 978 | 17.217±0.270 |
| | | 2 | 655 | 278 | 35 | 7 | 0 | 0 | 0 | 0 | 1 | | | | | | | | | 978 | 17.217±0.270 |
| | | 2 | 655 | 278 | 35 | 7 | 0 | 0 | 0 | 0 | 1 | | | | | | | | | 978 | 17.217±0.270 |
Fig. 156. Yearly frequency distributions of the body length of specimens collected from January to February. □: specimens collected in January, ■: specimens collected in February.
第156図および第111表から1960年〜1965年のイカナゴ稚仔採捕数をみると、1965年以外の各年では、1月の採捕数が2月を上回る。また1960、1961年では、2月のイカナゴ稚仔体長组成は、その他の年にくらべて大型魚の割合は大きく、変異の幅も広い。

このような現象は、イカナゴ以外の魚類についても良く知られることで、年による産卵期の遅延、成長、魚体の伸長に伴う自然減耗の増大および遊泳力の増大に伴う魚群の拡散と逃逸などに基づくものと思われる。したがって、1月のイカナゴ稚仔採捕数は、ほぼその年の稚仔量を示すことができるように思われるが、産卵期が年によって変化するため毎年の定期的イカナゴ調査日は、孵化後の稚仔成育日数と一致しない。そのため稚仔の成長に伴う分散、自然死亡、逃逸の割合が年により異なり、1月の稚仔採捕数からその年のイカナゴ漁の豊穣を他の年と比較推定することは、特に多いとか、特に少ないときわりは困難である。

第156図によると稚魚採集体長の幅は、浜田（1966）の1〜3月播磨灘、大阪湾採捕イカナゴ稚魚体長3.1〜24.2mmとほぼ一致し、1月採集したイカナゴ稚仔の体長モードは、1960、1964年を除くと0.4〜0.5cmのものが60〜70%を占める。また前にも述べたようにイカナゴ産卵海域と目される播磨灘西部では、その他の海域よりイカナゴ稚仔の体長は小さい。そこで一つの試みとして、これら各年の1、2月の観測定点のうち、それぞれに共通して観測され欠測のない定点を第157図のように選び、これらの定点についてイカナゴ採捕数を求め第113表に示す。

Fig. 157. Map showing the stations (○) full scale survey in January and February, from 1960 to 1964.

Table 113. Total number of the specimens caught at the 37 stations.

<table>
<thead>
<tr>
<th>Date</th>
<th>No. of larval sand-lance per 37m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960 Jan.</td>
<td>44.24</td>
</tr>
<tr>
<td>1960 Feb.</td>
<td>3.68</td>
</tr>
<tr>
<td>'61 Jan.</td>
<td>78.51</td>
</tr>
<tr>
<td>'61 Feb.</td>
<td>4.84</td>
</tr>
<tr>
<td>'62 Jan.</td>
<td>63.36</td>
</tr>
<tr>
<td>'62 Feb.</td>
<td>32.21</td>
</tr>
<tr>
<td>'63 Jan.</td>
<td>208.96</td>
</tr>
<tr>
<td>'63 Feb.</td>
<td>150.29</td>
</tr>
<tr>
<td>'64 Jan.</td>
<td>285.85</td>
</tr>
<tr>
<td>'64 Feb.</td>
<td>53.91</td>
</tr>
<tr>
<td>'65 Jan.</td>
<td>42.71</td>
</tr>
<tr>
<td>'65 Feb.</td>
<td>75.11</td>
</tr>
</tbody>
</table>
第113表から各年のイカナゴ稚仔採捕数を引用し、各年の値後瀬1固定点の1、2月平均水温を比較すると、第158図のようなである。これをよると、1月のイカナゴ稚仔採捕数は1964年を除き、1月の平均水温と逆相関を示し、1月の水温上昇は、イカナゴ稚仔採捕数の減少を伴う。

Fig. 158. Yearly changes of the total number of larval sand-lance collected at the stations shown in Fig. 157 and the mean water temperature in respective month of January and February. Broken lines, water temperature; solid lines, number of sand-lance.
Remarks: ●, × January, ○, ◎ February.

しかし産卵数は、親魚の年令組成、肥満度およびその絶対数によって変化し、産卵期は水温によって影響されると、また稚仔数は成長に比例して増加すると同時に遊泳力の増加による採捕数の減少、分散密度の変化などを考えあわせると、水温だけの関係から稚仔採捕数を表することは、幾分早計のようである。

つぎに第112表から体長区分の0.3〜0.4cmと0.4〜0.5cmに含まれる年ごとの1月のイカナゴ体長百分率を求めると、イカナゴ稚仔体長は1961年が最も大きく、1963、1965、1962、1960年がこれにつづき1964年が最も小さい。また2月の体長百分率からは、1960年が最も大きく1964年が最も小さいが、これら変異の幅と稚仔出現の模様は、それぞれの産卵期の変異を示すもので、これらはイカナゴ漁期の推定に役だつ。

第3項 稚仔採集方法の比較

イカナゴ稚仔の分布は、1、2月の稚仔期には、水深6〜8mに濃密で、3月以後の稚魚期には、広く分散することがほぼ推定される。1、2月の稚仔期のイカナゴ採集する方法として、(1)水深6〜10mに水面にかける、(2)底部から10mまで採集の二つが自然考慮される。またイカナゴ稚仔採集のために使用する網目は、1、2月ではイカナゴ卵が採集されることが望ましく、水深3〜10cm以下でよい。ここで垂直びきと水平びきを比較するため1960〜1964年までの各年の1、2月資料のうち、口径20cm、網目XX13(1960年2月は網目GG40)、網の長さ15cmのPlankton netで水深5mを水平びきして採集し、同型のPlankton netを水深20cmから垂直びきしたものをについて検討してみた。

第114表を観察結果を示したものの、イカナゴ稚仔採捕数は各定点ごとに1m2の網体数に補正した。

1. イカナゴ稚仔採捕定数

イカナゴ稚仔採捕定数を各年について水平びきと垂直びきを比較すると、水平びきでは常に垂直びきよりも多い。

2. イカナゴ採捕数

イカナゴの各定点ごとの採捕数を経年的にみると1961年2月、1962年1月、1963年1月、1964年2月では垂直びきの方が水深をより大きい値を示した。

第115表(A)、(B)は、1960〜1964年までの各年ににおける1、2月調査結果からPlankton netの水深を15cmの水深を30cmとした場合の採捕数を示した。
Table 114. Comparison of the collecting efficiency for larval sand-lance between horizontal and vertical towing.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>of stations</td>
<td>81</td>
<td>81</td>
<td>53</td>
<td>74</td>
<td>88</td>
</tr>
<tr>
<td>surveyed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number</td>
<td>65</td>
<td>23</td>
<td>47</td>
<td>7</td>
<td>38</td>
</tr>
<tr>
<td>of stations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with catch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage</td>
<td>80.25</td>
<td>28.40</td>
<td>58.02</td>
<td>64.66</td>
<td>71.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number</td>
<td>16</td>
<td>58</td>
<td>34</td>
<td>73</td>
<td>15</td>
</tr>
<tr>
<td>of stations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>without catch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number</td>
<td>79.96</td>
<td>54.54</td>
<td>14.62</td>
<td>53.69</td>
<td>90.67</td>
</tr>
<tr>
<td>of sand-lance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>caught</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Average</td>
<td>1.23</td>
<td>2.37</td>
<td>0.31</td>
<td>1.22</td>
<td>2.39</td>
</tr>
<tr>
<td>number of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sand-lance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>caught per</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>station</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The stations without catch were unconsidered for calculation of the average number.
Table 115. Frequency distribution of the towing velocity of plankton net. (A), horizontal towing; (B), vertical towing.

(A)

<table>
<thead>
<tr>
<th>Mesh</th>
<th>Time of towing</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>XX 13</td>
<td>10</td>
<td>184</td>
</tr>
<tr>
<td>XX 13</td>
<td>5~10</td>
<td>61</td>
</tr>
<tr>
<td>XX 13</td>
<td>5</td>
<td>81</td>
</tr>
<tr>
<td>XX 13</td>
<td>3</td>
<td>87</td>
</tr>
<tr>
<td>XX 13</td>
<td>3</td>
<td>88</td>
</tr>
<tr>
<td>XX 13</td>
<td>3</td>
<td>63</td>
</tr>
<tr>
<td>XX 13</td>
<td>3</td>
<td>80</td>
</tr>
<tr>
<td>XX 13</td>
<td>3</td>
<td>80</td>
</tr>
</tbody>
</table>

(B)

<table>
<thead>
<tr>
<th>Mesh</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>XX 13</td>
<td>12</td>
</tr>
<tr>
<td>XX 13</td>
<td>5</td>
</tr>
<tr>
<td>XX 13</td>
<td>5</td>
</tr>
<tr>
<td>XX 13</td>
<td>3~5</td>
</tr>
<tr>
<td>XX 13</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1.0</th>
<th>1.1</th>
<th>1.2</th>
<th>1.3</th>
<th>1.4</th>
<th>1.5</th>
<th>1.6</th>
<th>1.7</th>
<th>1.8</th>
<th>1.9</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1959</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Feb.</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>60</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>61</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>62</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>63</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>64</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>0.2~0.3</th>
<th>0.4~0.5</th>
<th>0.6~0.7</th>
<th>0.8~0.9</th>
<th>1.0~1.1</th>
<th>1.2~1.3</th>
<th>Mesh</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>XX 13</td>
</tr>
<tr>
<td>Feb.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>XX 13</td>
</tr>
<tr>
<td>61</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>XX 13</td>
</tr>
<tr>
<td>62</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>XX 13</td>
</tr>
<tr>
<td>63</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>XX 13</td>
</tr>
<tr>
<td>64</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>XX 13</td>
</tr>
<tr>
<td>Date</td>
<td>0~1</td>
<td>2~3</td>
<td>4~5</td>
<td>6~7</td>
<td>8~9</td>
<td>10~11</td>
<td>12~13</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>1960</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>0.3~0.4</th>
<th>0.4~0.5</th>
<th>0.5~0.6</th>
<th>0.6~0.7</th>
<th>0.7~0.8</th>
<th>0.8~0.9</th>
<th>0.9~1.0</th>
<th>1.0~1.1</th>
<th>1.1~1.2</th>
<th>1.2~1.3</th>
<th>1.3~1.4</th>
<th>1.4~1.5</th>
<th>1.5~</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td></td>
</tr>
<tr>
<td>Jan.</td>
<td></td>
</tr>
<tr>
<td>Feb.</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
</tr>
<tr>
<td>Jan.</td>
<td></td>
</tr>
<tr>
<td>Feb.</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
</tr>
<tr>
<td>Jan.</td>
<td></td>
</tr>
<tr>
<td>Feb.</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Jan.</td>
<td></td>
</tr>
<tr>
<td>Feb.</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Jan.</td>
<td></td>
</tr>
<tr>
<td>Feb.</td>
<td></td>
</tr>
</tbody>
</table>
第115表によると，流速は水平びきが変異の幅は広い。水平びきのばあい調査船を最高速度（60—72 m/min）でえい網したが，網が Plankton によってふきがれ流速能力が適当する。したがって，最初ではえい網時間を10分間とすると，漸次減少し1962年2月以降では3分間に短縮した。

第117表は、1960—1964年までの1，2月に垂直採集した1 m³ 当たりの Plankton 沈濁量の頻度分布を示す。

Table 117. Frequency distribution of the settling volume of plankton per cubic meter, collected by vertical towing of plankton net.

<table>
<thead>
<tr>
<th>Date</th>
<th>Average settling volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>13.5</td>
</tr>
<tr>
<td>1961</td>
<td>10.7</td>
</tr>
<tr>
<td>1962</td>
<td>11.6</td>
</tr>
<tr>
<td>1963</td>
<td>11.9</td>
</tr>
<tr>
<td>1964</td>
<td>11.5</td>
</tr>
</tbody>
</table>

この表によると，Plankton 沈濁量は1960年および1961年の1月，2月で小さく，1962年1，2月で大きい。Plankton 沈濁量の大きい1962年の水平びき流速速度のモードは0.9—1.0m/sec で，その他の年よりも大き目である。これらの原因については明らかでないが，Plankton の物理的条件，環境の物理的条件などによるものである。

つきに垂直びきについてみると，流速は各月ともにほぼ近似し，流速速度のモードは0.5—0.9m/sec で，流速量は0.5—1.0m³ にモードをもつ。

以上の資料から，2つの採集方法の得失を述べたが，イカナゴ稚仔は水深6—10mに多く分布すること，採集率の大きいこと，掘水量が大きく補正値が小さいことなどの理由で，イカナゴ稚仔採集には網目XX13の北原式ネットまたは網目 GG50 の @ネットを3分間，水平びきすることが望ましいようである。

第2節 採集時期と稚仔採捕数の変化

前節において，年々のイカナゴ稚仔採捕数の変動は，イカナゴの体長が伸長するにつれて減少することを知った。またイカナゴの産卵および孵化の観察から自然界では，産卵期に遅速と長短があり，水温の高低で孵化期はかなり伸長することを知った。この調査の目的は Plankton net 採集によりイカナゴ稚仔量を推定する著者，イカナゴ稚仔量の時的に変化の様相をはっきりおく必要があると同時に，イカナゴ稚仔の魚体の伸長に関する知見を得るためである。

調査方法

調査方法は，第159頁に示す各定点において，水温，透明度を測定し，北原式 Plankton net 網目XX13で Plankton 沈濁量を測定した。
Table 118. Distribution of the total length of specimens caught from January to March in 1961–63 (in cm).

<table>
<thead>
<tr>
<th>Date</th>
<th>Body length (cm)</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1.0</th>
<th>1.1</th>
<th>1.2</th>
<th>1.3</th>
<th>1.4</th>
<th>1.5</th>
<th>1.6</th>
<th>1.7</th>
<th>1.8</th>
<th>1.9</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of specimens</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
<td>1.9</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>1961 Jan. 16–19</td>
<td>482</td>
<td>(20.95)</td>
<td>(70.12)</td>
<td>(8.09)</td>
<td>(0.62)</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Feb. 3</td>
<td>32</td>
<td>(31.25)</td>
<td>(50.00)</td>
<td>(15.63)</td>
<td>(3.13)</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Feb. 13–15</td>
<td>70</td>
<td>(12.85)</td>
<td>(15.71)</td>
<td>(7.14)</td>
<td>(14.29)</td>
<td>(11.43)</td>
<td>(14.43)</td>
<td>(4.29)</td>
<td>(7.14)</td>
<td>(10.00)</td>
<td>1</td>
</tr>
<tr>
<td>Feb. 23</td>
<td>50</td>
<td>(16.00)</td>
<td>(48.00)</td>
<td>(20.00)</td>
<td>(6.00)</td>
<td>(6.00)</td>
<td>(2.00)</td>
<td>(2.00)</td>
<td>1</td>
</tr>
<tr>
<td>'62 Jan. 16–21</td>
<td>616</td>
<td>(0.81)</td>
<td>(36.04)</td>
<td>(59.42)</td>
<td>(37.3)</td>
<td>1</td>
</tr>
<tr>
<td>Jan. 24–26</td>
<td>163</td>
<td>(17.79)</td>
<td>(65.64)</td>
<td>(11.66)</td>
<td>(3.68)</td>
<td>(0.61)</td>
<td>(0.61)</td>
<td>1</td>
</tr>
<tr>
<td>Jan. 31–Feb. 2</td>
<td>38</td>
<td>(17.83)</td>
<td>(69.96)</td>
<td>(2.49)</td>
<td>(0.46)</td>
<td>(0.20)</td>
<td>(0.07)</td>
<td>1</td>
</tr>
<tr>
<td>Feb. 7–9</td>
<td>43</td>
<td>(11.63)</td>
<td>(46.52)</td>
<td>(30.23)</td>
<td>(9.30)</td>
<td>1</td>
</tr>
<tr>
<td>Feb. 12–16</td>
<td>313</td>
<td>1</td>
</tr>
<tr>
<td>Feb. 21–23</td>
<td>27</td>
<td>(0.32)</td>
<td>(27.80)</td>
<td>(37.38)</td>
<td>(13.74)</td>
<td>(7.99)</td>
<td>(7.03)</td>
<td>(0.96)</td>
<td>(1.96)</td>
<td>(1.60)</td>
<td>(0.32)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>'63 Jan. 7–9</td>
<td>133</td>
<td>(18.52)</td>
<td>(18.52)</td>
<td>(29.63)</td>
<td>(14.81)</td>
<td>1</td>
</tr>
<tr>
<td>Jan. 14–23</td>
<td>1,528</td>
<td>(54.14)</td>
<td>(45.86)</td>
<td>(54.14)</td>
<td>(45.86)</td>
<td>1</td>
</tr>
<tr>
<td>Jan. 24</td>
<td>213</td>
<td>(26.83)</td>
<td>(69.96)</td>
<td>(2.49)</td>
<td>(0.46)</td>
<td>(0.20)</td>
<td>(0.07)</td>
<td>1</td>
</tr>
<tr>
<td>Jan. 31–Feb. 2</td>
<td>262</td>
<td>(19.12)</td>
<td>(72.30)</td>
<td>(7.98)</td>
<td>1</td>
</tr>
<tr>
<td>Feb. 6–8</td>
<td>164</td>
<td>(8.40)</td>
<td>(67.94)</td>
<td>(17.94)</td>
<td>(4.58)</td>
<td>(1.15)</td>
<td>1</td>
</tr>
<tr>
<td>Feb. 11–15</td>
<td>785</td>
<td>(14.63)</td>
<td>(47.56)</td>
<td>(29.27)</td>
<td>(6.10)</td>
<td>(1.22)</td>
<td>(0.61)</td>
<td>(0.61)</td>
<td>1</td>
</tr>
<tr>
<td>Feb. 20–22</td>
<td>74</td>
<td>(1.40)</td>
<td>(30.32)</td>
<td>(24.08)</td>
<td>(13.12)</td>
<td>(4.08)</td>
<td>(4.08)</td>
<td>(1.40)</td>
<td>(1.02)</td>
<td>(0.51)</td>
<td>1</td>
</tr>
<tr>
<td>Feb. 28–Mar. 2</td>
<td>49</td>
<td>(1.35)</td>
<td>(29.73)</td>
<td>(17.57)</td>
<td>(10.81)</td>
<td>(18.92)</td>
<td>(9.46)</td>
<td>(4.05)</td>
<td>(5.41)</td>
<td>(1.35)</td>
<td>1</td>
</tr>
<tr>
<td>Mar. 6–8</td>
<td>20</td>
<td>(4.08)</td>
<td>(22.49)</td>
<td>(14.29)</td>
<td>(4.62)</td>
<td>(6.12)</td>
<td>(4.08)</td>
<td>(2.04)</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: The numbers represent the distribution of the total length of specimens caught from January to March in 1961–63.
Table 119. Results of the collection of larval sand lance per cubic meter in 1961-1963.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>16.7</td>
<td>13.1</td>
<td>23.7</td>
<td></td>
<td>11.7</td>
<td>15.7</td>
<td>4.7</td>
</tr>
<tr>
<td>30</td>
<td>3.04</td>
<td>0.36</td>
<td>0.39</td>
<td>0.11</td>
<td>2</td>
<td>0.74</td>
<td>0.48</td>
<td>0.10</td>
</tr>
<tr>
<td>32</td>
<td>8.48</td>
<td>1.31</td>
<td>0.45</td>
<td>0.06</td>
<td>6</td>
<td>0.89</td>
<td>0.67</td>
<td>0.04</td>
</tr>
<tr>
<td>39</td>
<td>3.88</td>
<td>0.00</td>
<td>0.45</td>
<td>0.25</td>
<td>10</td>
<td>0.76</td>
<td>4.29</td>
<td>1.24</td>
</tr>
<tr>
<td>41</td>
<td>4.62</td>
<td>0.21</td>
<td>0.20</td>
<td>1.02</td>
<td>15</td>
<td>0.75</td>
<td>6.94</td>
<td>2.63</td>
</tr>
<tr>
<td>44</td>
<td>4.28</td>
<td>0.75</td>
<td>0.21</td>
<td>0.00</td>
<td>0</td>
<td>0.75</td>
<td>6.94</td>
<td>2.63</td>
</tr>
<tr>
<td>46</td>
<td>4.85</td>
<td>2.57</td>
<td>0.17</td>
<td>0.00</td>
<td>0</td>
<td>0.75</td>
<td>6.94</td>
<td>2.63</td>
</tr>
<tr>
<td>48</td>
<td>2.38</td>
<td>0.54</td>
<td>0.44</td>
<td>0.00</td>
<td>0</td>
<td>0.75</td>
<td>6.94</td>
<td>2.63</td>
</tr>
<tr>
<td>50</td>
<td>1.75</td>
<td>0.99</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
<td>0.75</td>
<td>6.94</td>
<td>2.63</td>
</tr>
<tr>
<td>77</td>
<td>4.39</td>
<td>0.23</td>
<td>0.25</td>
<td>0.00</td>
<td>0</td>
<td>0.75</td>
<td>6.94</td>
<td>2.63</td>
</tr>
<tr>
<td>79</td>
<td>4.05</td>
<td>0.30</td>
<td>0.23</td>
<td>0.66</td>
<td>0</td>
<td>0.75</td>
<td>6.94</td>
<td>2.63</td>
</tr>
<tr>
<td>81</td>
<td>2.46</td>
<td>0.56</td>
<td>0.14</td>
<td>0.15</td>
<td>0</td>
<td>0.75</td>
<td>6.94</td>
<td>2.63</td>
</tr>
<tr>
<td>83</td>
<td>2.59</td>
<td>0.90</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
<td>0.75</td>
<td>6.94</td>
<td>2.63</td>
</tr>
<tr>
<td>30</td>
<td>3.38</td>
<td>0.15</td>
<td>0.35</td>
<td>0.02</td>
<td>0</td>
<td>0.75</td>
<td>6.94</td>
<td>2.63</td>
</tr>
<tr>
<td>32</td>
<td>0.53</td>
<td>0.00</td>
<td>0.07</td>
<td>0.00</td>
<td>0</td>
<td>0.75</td>
<td>6.94</td>
<td>2.63</td>
</tr>
<tr>
<td>39</td>
<td>0.50</td>
<td>0.00</td>
<td>0.03</td>
<td>0.00</td>
<td>0</td>
<td>0.75</td>
<td>6.94</td>
<td>2.63</td>
</tr>
<tr>
<td>41</td>
<td>7.71</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0</td>
<td>0.75</td>
<td>6.94</td>
<td>2.63</td>
</tr>
<tr>
<td>44</td>
<td>3.24</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
<td>0</td>
<td>0.75</td>
<td>6.94</td>
<td>2.63</td>
</tr>
<tr>
<td>46</td>
<td>4.89</td>
<td>0.84</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
<td>0.75</td>
<td>6.94</td>
<td>2.63</td>
</tr>
<tr>
<td>48</td>
<td>2.97</td>
<td>1.28</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
<td>0.75</td>
<td>6.94</td>
<td>2.63</td>
</tr>
<tr>
<td>50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.11</td>
<td>0.00</td>
<td>0</td>
<td>0.75</td>
<td>6.94</td>
<td>2.63</td>
</tr>
<tr>
<td>77</td>
<td>2.96</td>
<td>1.19</td>
<td>0.54</td>
<td>0.00</td>
<td>0</td>
<td>0.75</td>
<td>6.94</td>
<td>2.63</td>
</tr>
<tr>
<td>79</td>
<td>2.69</td>
<td>0.00</td>
<td>0.25</td>
<td>0.00</td>
<td>0</td>
<td>0.75</td>
<td>6.94</td>
<td>2.63</td>
</tr>
<tr>
<td>81</td>
<td>4.29</td>
<td>0.00</td>
<td>0.15</td>
<td>0.00</td>
<td>0</td>
<td>0.75</td>
<td>6.94</td>
<td>2.63</td>
</tr>
<tr>
<td>83</td>
<td>2.15</td>
<td>0.92</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
<td>0.75</td>
<td>6.94</td>
<td>2.63</td>
</tr>
<tr>
<td>34.28</td>
<td>6.84</td>
<td>4.31</td>
<td>0.11</td>
<td>0.22</td>
<td>0</td>
<td>0.75</td>
<td>6.94</td>
<td>2.63</td>
</tr>
<tr>
<td>111</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
<td>0.75</td>
<td>6.94</td>
<td>2.63</td>
</tr>
<tr>
<td>113</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
<td>0.75</td>
<td>6.94</td>
<td>2.63</td>
</tr>
<tr>
<td>115</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
<td>0.75</td>
<td>6.94</td>
<td>2.63</td>
</tr>
<tr>
<td>117</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
<td>0.75</td>
<td>6.94</td>
<td>2.63</td>
</tr>
<tr>
<td>119</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
<td>0.75</td>
<td>6.94</td>
<td>2.63</td>
</tr>
<tr>
<td>121</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
<td>0.75</td>
<td>6.94</td>
<td>2.63</td>
</tr>
<tr>
<td>123</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
<td>0.75</td>
<td>6.94</td>
<td>2.63</td>
</tr>
<tr>
<td>127</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
<td>0.75</td>
<td>6.94</td>
<td>2.63</td>
</tr>
<tr>
<td>129</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
<td>0.75</td>
<td>6.94</td>
<td>2.63</td>
</tr>
<tr>
<td>189</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
<td>0.75</td>
<td>6.94</td>
<td>2.63</td>
</tr>
<tr>
<td>Total</td>
<td>46.77</td>
<td>8.692</td>
<td>11.25</td>
<td>0.00</td>
<td></td>
<td>0.00</td>
<td>0.76</td>
<td>99.49</td>
</tr>
</tbody>
</table>

* Plankton net of 90cm caliber with 170cm GG40 mesh net.

— 228 —
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17~21</td>
<td>25~27</td>
<td>7~9</td>
<td>14~23</td>
<td>24</td>
<td>31~2</td>
<td>7~9</td>
</tr>
<tr>
<td>0 0</td>
<td>2.99</td>
<td>5.62</td>
<td>14.96</td>
<td>0</td>
<td>4.33</td>
<td>1.71</td>
</tr>
<tr>
<td>0 0</td>
<td>7.00</td>
<td>16.21</td>
<td>9.79</td>
<td>0</td>
<td>4.50</td>
<td>2.68</td>
</tr>
<tr>
<td>0 0</td>
<td>4.61</td>
<td>9.75</td>
<td>9.85</td>
<td>0</td>
<td>2.46</td>
<td>-0.55</td>
</tr>
<tr>
<td>0 0</td>
<td>13.95</td>
<td>13.24</td>
<td>5.59</td>
<td>0</td>
<td>3.30</td>
<td>4.34</td>
</tr>
<tr>
<td>0 0</td>
<td>5.98</td>
<td>12.90</td>
<td>7.36</td>
<td>0</td>
<td>5.70</td>
<td>3.64</td>
</tr>
<tr>
<td>0 0</td>
<td>10.50</td>
<td>10.23</td>
<td>8.79</td>
<td>0</td>
<td>3.77</td>
<td>-0.78</td>
</tr>
<tr>
<td>0 0</td>
<td>-0.43</td>
<td>4.70</td>
<td>4.40</td>
<td>0</td>
<td>1.74</td>
<td>2.47</td>
</tr>
<tr>
<td>0 0</td>
<td>4.01</td>
<td>14.04</td>
<td>7.16</td>
<td>0</td>
<td>2.90</td>
<td>2.76</td>
</tr>
<tr>
<td>0 0</td>
<td>2.55</td>
<td>14.60</td>
<td>4.55</td>
<td>0</td>
<td>6.33</td>
<td>4.84</td>
</tr>
<tr>
<td>0 0</td>
<td>0.80</td>
<td>4.71</td>
<td>8.85</td>
<td>0</td>
<td>5.83</td>
<td>2.31</td>
</tr>
<tr>
<td>0 0</td>
<td>4.33</td>
<td>13.27</td>
<td>3.94</td>
<td>0</td>
<td>4.29</td>
<td>3.86</td>
</tr>
<tr>
<td>0 0</td>
<td>5.09</td>
<td>8.15</td>
<td>2.08</td>
<td>0</td>
<td>1.76</td>
<td>-1.12</td>
</tr>
<tr>
<td>0 0</td>
<td>3.18</td>
<td>5.41</td>
<td>0</td>
<td>0</td>
<td>5.41</td>
<td>0.77</td>
</tr>
<tr>
<td>0 0</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>2.65</td>
<td>0.83</td>
<td>5.35</td>
<td>3.56</td>
</tr>
<tr>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>2.65</td>
<td>0.83</td>
<td>5.35</td>
<td>3.56</td>
</tr>
<tr>
<td>0 0</td>
<td>3.69</td>
<td>1.51</td>
<td>2.88</td>
<td>4.95</td>
<td>2.79</td>
<td>0.84</td>
</tr>
<tr>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>1.92</td>
<td>1.99</td>
<td>0.73</td>
<td>0.70</td>
</tr>
<tr>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>4.59</td>
<td>2.98</td>
<td>2.28</td>
<td>1.95</td>
</tr>
<tr>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>6.00</td>
<td>3.82</td>
<td>3.74</td>
<td>0</td>
</tr>
<tr>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>1.03</td>
<td>0.76</td>
<td>0.99</td>
<td>0.79</td>
</tr>
<tr>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>4.66</td>
<td>3.04</td>
<td>1.68</td>
<td>0</td>
</tr>
<tr>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>0.61</td>
<td>0.84</td>
<td>0.72</td>
<td>0</td>
</tr>
<tr>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>1.42</td>
<td>0.91</td>
<td>0.37</td>
<td>0.73</td>
</tr>
<tr>
<td>0 0</td>
<td>0.71</td>
<td>0</td>
<td>0</td>
<td>0.69</td>
<td>6.51</td>
<td>2.69</td>
</tr>
<tr>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>12.43</td>
<td>9.63</td>
<td>6.31</td>
<td>0.73</td>
</tr>
<tr>
<td>0 0</td>
<td>0</td>
<td>6.59</td>
<td>11.16</td>
<td>3.88</td>
<td>6.07</td>
<td>0</td>
</tr>
<tr>
<td>0 0</td>
<td>0</td>
<td>4.92</td>
<td>4.50</td>
<td>12.11</td>
<td>12.34</td>
<td>0.89</td>
</tr>
<tr>
<td>0 0</td>
<td>0</td>
<td>10.53</td>
<td>3.54</td>
<td>-0</td>
<td>0</td>
<td>0.81</td>
</tr>
<tr>
<td>0 0</td>
<td>0</td>
<td>0.85</td>
<td>13.63</td>
<td>1.81</td>
<td>-0</td>
<td>0</td>
</tr>
<tr>
<td>0 0</td>
<td>1.75</td>
<td>2.66</td>
<td>7.54</td>
<td>2.03</td>
<td>4.78</td>
<td>0</td>
</tr>
<tr>
<td>0 0</td>
<td>0</td>
<td>2.74</td>
<td>8.09</td>
<td>1.34</td>
<td>-1.01</td>
<td>2.59</td>
</tr>
<tr>
<td>0 0</td>
<td>0.77</td>
<td>1.49</td>
<td>15.73</td>
<td>3.72</td>
<td>3.26</td>
<td>0</td>
</tr>
<tr>
<td>0 0</td>
<td>0</td>
<td>0.79</td>
<td>4.60</td>
<td>7.52</td>
<td>3.27</td>
<td>1.68</td>
</tr>
<tr>
<td>0 0</td>
<td>0</td>
<td>0.61</td>
<td>7.63</td>
<td>7.14</td>
<td>0.86</td>
<td>4.58</td>
</tr>
<tr>
<td>0 0</td>
<td>0.43</td>
<td>0.58</td>
<td>6.26</td>
<td>7.11</td>
<td>5.50</td>
<td>4.58</td>
</tr>
<tr>
<td>0 0</td>
<td>1.54</td>
<td>2.70</td>
<td>12.70</td>
<td>8.17</td>
<td>5.49</td>
<td>0</td>
</tr>
<tr>
<td>0 0</td>
<td>1.97</td>
<td>8.51</td>
<td>12.66</td>
<td>0</td>
<td>0</td>
<td>3.57</td>
</tr>
<tr>
<td>0 0</td>
<td>0</td>
<td>1.63</td>
<td>3.88</td>
<td>3.28</td>
<td>5.56</td>
<td>4.05</td>
</tr>
<tr>
<td>0 0</td>
<td>1.15</td>
<td>1.53</td>
<td>6.22</td>
<td>4.64</td>
<td>0</td>
<td>0.69</td>
</tr>
<tr>
<td>0 0</td>
<td>0</td>
<td>3.26</td>
<td>0.66</td>
<td>5.70</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0 0</td>
<td>0</td>
<td>3.34</td>
<td>1.63</td>
<td>4.36</td>
<td>1.92</td>
<td>0</td>
</tr>
</tbody>
</table>
| 0 4.15 | 85.41 | 207.31 | 123.55 | 190.33 | 142.76 | 119.44 | 54.80 | 36.58 | 16.67 | 1.44 | 0.47 | -229 -
Fig. 159. Distribution of the stations at which the investigation were done more frequently to obtain the clear information of sand-lance larvae occurrence. Crosses, 1961; soft circles, 1962 and 1963.

イカナゴ稚仔の採集方法は垂直びさとし，1961年では，北原式 Plankton net（網目 XX 13）を底層から1回えい網した。ただし2月23日は，大型ネット（網目 GG 40）を使用した。1962，1963年では，水深20mから2回えい網した。これらの採捕イカナゴ稚仔は，漁水量によって1m³のイカナゴ稚仔数に補正した。なお1962年2月21～23日では，網目 XX 13, GG 40 の Planton net を併用し，1963年3月6～8日，11～15日でも同じく網目 GG40の Plankton net を併用した。

調査結果

第119表は，調査結果を示す。各年の調査日ごとに，イカナゴ稚仔採捕数を示すと第160図のようになる。

Fig. 160. Monthly changes of the number of larval sand-lance collected during the periods from December or January to March in 1961～63.

第160図で1961年は，調査定点数が12で2月23日の調査では網目 GG 40 の大型ネットで採捕したものである。そこで1962年と1963年との各採捕数について比較すると，第156図でわかるように，両年のイカナゴ稚仔
第160図でも、これら両年の採捕数変化の模様はきわめて良く一致し、採捕数のピークはともに1月20日前後にみられた。一方1961年の採捕数をみると1962、1963年にピークを示した1月20日付近では、すでに減少を示しているようである。いずれにしてもピークの出現日は、年により遅速があるのは当然である。またイカナゴ稚仔が採捕されてから採捕数がピークに達するまでの期間は、1963年では1962年にくらべて10日以上も長い。第118表および第161図に、これら観測日ごとのイカナゴ稚仔体長組成およびモードを示す。

Fig. 161. Range of the total length of larval sand-lance collected during the periods from January to March in 1961~63. Solid circles, 1961; soft circles, 1962; crosses, 1963.

第161図から各年とも孵化後の経過日数にしたがい体長変異の幅が増大すること、および Plankton netで採集できるイカナゴ稚仔の体長は、ほぼ1cm以下であることがわかる。ことで注意を要することは、これらの調査定点が個別個体の個体を示し、ぐらかという点であるが、満足なものとは思われない。また先にイカナゴの体長組成について、豊浦年の漁獲イカナゴには、寒仔と春仔の2つの山がみられ、その原因として、(1)年により産卵数が2回行なわれる。①産卵期の水温差により産卵期が産卵場ごとにずれるとした。第119表によって地域的なイカナゴ稚仔出現状況をみるために、各観測日ごとの平均採捕数をもとめ、その値の2倍以上を採捕した定点に+、半分以下を採捕した定点に-の符号を付け、これを集計した結果を第162図に示した。1962、1963年の分布と採捕状況を検討すると、産卵期の漁獲には、前述のように2箇所の産卵域が推測される。

すなわち、(1)三原水道 (a)四島北部海域が主要産卵海域と目される。また、1962年の暖冬では、これら両産卵海域での産卵期はほとんど差はないが、1963年の寒冷年では、三原水道産卵域のものが、四島北部海域のものより20日前後早いことがわかる。なお、第119表に+印を付した2回の調査は、口徑20cm、網目XX13、網片75cmのものに代わり、口徑90cm、網目GG40、網長170cmのPlankton netを垂直に用いたもので、漁獲を増加した場合の影響をみるために行なった。これらの結果は期待し異なり、イカナゴ稚仔の採捕数は減少した。すなわち、3月ごろのイカナゴ稚仔は、前にも述べた通り分散が大きく、遊泳力の増大に伴いPlankton netから逃さることができると思われる。
第 3 節 海流瓶調査による瀬戸内海の潮流

本調査は、瀬戸内海の主要な4 海峡で、それぞれビール瓶25本ずつを投入し潮流を調査した。投入時期は1949年5月21, 25, 27日で、これは瀬戸内海生産力調査に便乗実施したもので、海流瓶投入場所は第163図に示す通りである。なお本調査にご協力をいただいた海流びん拾得者11名の方々に厚くお礼申し上げる。

Fig. 163. Diagrammatic representation on the migration of the drift bottles. Broken lines, based on the data of the Okayama Fisheries Experimental Station.

海流調査に使用したビールびんは、内部を洗浄して乾燥させ細砂を入れて、びんの頭部がわずかに水面から露出するように浮力を調節し、報告用紙を封入してゴムせんで密封した。
調査結果

調査資料の回収は12回で、回収率は投入数の12%に当たる。紀伊水道で投入したものについては全く資料がえられなかった。下関海峡から投入したびんは、5本が下関市で拾われ、豊後水道から投入したびんは1本が大分県東国東郡伊美村で拾われた。また明石海峡から投入したびんは、神戸市2本、明石市1本、岩屋町1本、仮屋町1本が東部で、他の1本は西郷して今治市でそれぞれ拾われた。また図中の破線は、岡山県水産試験場事業報告（1964）から引用したもので、染東の漂流試験の航跡図である。

これらの結果から瀬戸内海の潮流について結論づけることはできないが、後述するように、浮遊生物およびその周辺の潮流について、幾らかの示唆を与えるように思わわれる。すなわち、紀伊水道は、染瀬南部四国寄りに西進し、豊後水道は、偏東、染瀬北部に東進し、偏東の浮遊生物はこれら東西両流の混合海域に当たる。

第4節 海況

イカナゴの成長が、餌料の多寡に左右されること、産卵期の遅延、短縮が水温によって定まるため、浮遊率が水温8℃付近で最も高いこと、稚仔の分散が偏西風と潮流によって西部から東部へ広がること、稚仔の水平分布が水深6～8m層に濃密であること、観点は海況選択性を示すこと、漁獲量が大潮時で変化すること、観点の日週間活動は、日出と日没の前後に活発であることなど、イカナゴは海況と密接に関連をもつことを知った。しかし、海況は時々変化する上に、おびただしい要因が複合して作用するため、個々の要因から要因の相互関係まで解明することは困難である。ここでは、水温、塩分、Plankton量などの海洋観測資料について、一般的な分析を試みた。

従来海洋観測は各海域で周年実施され、その知見も多数報告されている。この調査も特殊なものではなく、イカナゴ生態研究の一環として実施したものである。

調査方法

調査方法は、海洋観測法に準拠して、毎月1回、偏東寄およびその周辺部について実施したものである。調査項目は、水温、塩分、透明度、Planktonなどで、照度、潮度については、花岡（1954）ら、古川（1956）に従った。

第1項 水温

水温は、海洋観測項目としては最も重要なものであるが、表層水温は時間的な変化が著しい。したがって、ここに述べる水温は、水深5mの水温を示す。水温の観測は、1959年1月以降毎月各定点で測定したが、測定結果を取りまとめて報告する。

イカナゴの産卵および孵化に最も関係の深い各年の1月水温分布を1960〜1964年までについて示すと第164〜166図の通りである。ただし1959年では観測がかなり長期にわたったので除外した。

第164〜168図によると、これら各年の1月の水温は8〜13℃で、示岡湾沿岸部および偏北寄東部は低溫、偏東寄西部は高温である。また豊後年に当たる1960、1962年と、団沖年に当たる1960、1962年とは、それぞれ水温分布が相違する。

つきに第169図に示す11月水温ならびに内海区水産研究所尾道試験地の沿岸定点観測月平均水温とを第120表に示す。
Fig. 164. Water temperature around the Bingo Nada and its vicinities during January 18-22, 1960 (°C).

Fig. 165. Water temperature around the Bingo Nada and its vicinities during January 16-19, 1961 (°C).
Fig. 166. Water temperature in the Bingo Nada and its vicinities during January 16-21, 1962 (°C).

Fig. 167. Water temperature in the Bingo Nada and its vicinities during January 14-23, 1963 (°C).
Fig. 168. Water temperature in the Bingo Nada and its vicinities during January 18-23, 1964 (°C).

Fig. 169. The stations for the water temperature analysis to be compared with the coastal one.
Table 120. Monthly changes of the average water temperature of the Bingo Nada and the coastal water temperature obtained by the regular observation. (Numerals within parentheses represent the number of stations.)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1959</td>
<td>-</td>
<td>-</td>
<td>11.0</td>
<td>14.3</td>
<td>17.4</td>
<td>22.7</td>
<td>25.3</td>
<td>27.4</td>
<td>28.0</td>
<td>22.8</td>
<td>19.7</td>
<td>14.9</td>
</tr>
<tr>
<td></td>
<td>10.4</td>
<td>10.2</td>
<td>11.1</td>
<td>13.7</td>
<td>16.8</td>
<td>21.1</td>
<td>24.8</td>
<td>27.2</td>
<td>26.6</td>
<td>22.6</td>
<td>19.3</td>
<td>14.2</td>
</tr>
<tr>
<td>1960</td>
<td>11.0</td>
<td>9.6</td>
<td>10.7</td>
<td>14.2</td>
<td>17.6</td>
<td>20.6</td>
<td>25.6</td>
<td>27.8</td>
<td>26.7</td>
<td>22.2</td>
<td>19.0</td>
<td>14.6</td>
</tr>
<tr>
<td>Coast</td>
<td>(51)</td>
<td>(51)</td>
<td>(50)</td>
<td>(39)</td>
<td>(39)</td>
<td>(39)</td>
<td>(39)</td>
<td>(51)</td>
<td>(51)</td>
<td>(49)</td>
<td>(51)</td>
<td>(50)</td>
</tr>
<tr>
<td>1961</td>
<td>10.4</td>
<td>8.5</td>
<td>9.5</td>
<td>12.9</td>
<td>17.2</td>
<td>19.8</td>
<td>24.4</td>
<td>27.4</td>
<td>25.7</td>
<td>20.2</td>
<td>15.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(24)</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td>(49)</td>
<td>(49)</td>
<td>(49)</td>
</tr>
<tr>
<td>1962</td>
<td>11.1</td>
<td>9.9</td>
<td>10.3</td>
<td>13.9</td>
<td>17.5</td>
<td>18.8</td>
<td>23.5</td>
<td>27.3</td>
<td>26.7</td>
<td>23.2</td>
<td>18.1</td>
<td>14.0</td>
</tr>
<tr>
<td></td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td>(48)</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
</tr>
<tr>
<td>1963</td>
<td>11.0</td>
<td>9.7</td>
<td>10.4</td>
<td>12.8</td>
<td>16.7</td>
<td>19.2</td>
<td>23.3</td>
<td>26.8</td>
<td>26.0</td>
<td>22.1</td>
<td>18.0</td>
<td>13.7</td>
</tr>
<tr>
<td></td>
<td>(41)</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td>(41)</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
</tr>
<tr>
<td>1964</td>
<td>11.1</td>
<td>9.0</td>
<td>9.3</td>
<td>12.5</td>
<td>16.6</td>
<td>19.3</td>
<td>23.2</td>
<td>25.6</td>
<td>24.8</td>
<td>21.4</td>
<td>18.0</td>
<td>14.1</td>
</tr>
<tr>
<td></td>
<td>(51)</td>
</tr>
<tr>
<td>1965</td>
<td>11.0</td>
<td>9.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(51)</td>
<td>(51)</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 170. Seasonal changes of the water temperature at the layer of 5 meters depth in the Bingo Nada.
第170図から備後灘の月平均水温をみると、2月に最低；8，9月に最高を示す。一方沿岸定時観測の月平均水温は、2月が最低、8月が最高を示し、最高水温を示す月が両者で幾分異なる。しかしこ月に観測した備後灘平均水温は、沿岸定時観測の月平均水温と良く一致することがわからる。

第171図に月別水温分布を示す。これによって水温分布の様相を総観することにする。

Fig. 171. (1～10), (1, 2).
Maps showing monthly changes of the water temperature (°C) in the Mihara Strait and the Bingo Nada. The dots in the right bottom map show the locations of stations.
Fig. 171. (3, 4).
Fig. 171. (5, 6).
Fig. 171. (7, 8).
Fig. 171. (9, 10).
1月の水温分布は前述の通り。
2月の水温は年間の最低を示すが、各年ともに瀬戸中央部を２分して東、西に分れ、西部は高温、東部は低温である。
1963年3月の水温分布は、全海域が18°C を示し、分布の様相はきわめて単調であるが、他の年もかなり似た傾向がみられ瀬戸東部が低温である。
4月の水温分布は、3月水温分布と様相を異にし、笠間湾々口部が高温となり、瀬の南東部が低温となる。
5月の水温分布は、瀬戸東部が低温を示すが1962年では、瀬の南西部と瀬戸東部との両海域が低温を示す。
6月の水温分布の様相は、瀬戸中央部に高温海域がみられ、瀬の東、西両海域がやや低温である。
7月の水温分布も6月ほど似た現象が観察されるが、1960年では瀬戸中央部から西部に、1961年では瀬の北西部と南部において、1963年では瀬の中央部から北部に高温海域がみられる。
8月の水温分布は、1963年ではやや状を異にし、瀬戸中央部から東部に高温であるが、その他の年では、瀬戸中央部と北部および南部に高温海域がみられ、瀬の東部、西部もともに低温である。
9月の水温分布は、1960、1961年では全域に罩はほとんど認められないが、その他の年では瀬戸中央部に高温海域がみられる。
10月の水温分布は、瀬戸東部の水温降下が目立ち、瀬北部から水温が降下する。
11月の水温分布は、笠間湾々口部の水温低下が目立ち、瀬の南东部および南部海域が高水を示す。
12月の水温分布は、笠間湾々口部から瀬戸中央部にかけて低温を示し、瀬の南西部および北西部は高温を示す。

第2項塩素量

塩素量の大きさは、魚類の生息密度、種類数などを支配する大きな要因となる。イカナゴの生活についても、水温と共に重要な意義をもつことは当然であるが、イカナゴ親魚の塩分適応範囲はきわめて広いことを実験で示した。またイカナゴの飼料は主としてCopepodaで、魚体の成長に伴って大型Planktonを摂食するようになるが、これら飼料生物の大量に発生する海域は、塩分の低さ、降水の影響の強い海域が多い。

第172図に示した三原水道部の他並列も区別して、両者の塩素量（cl％）の平均値を月別に示すと、第121表のようである。

Fig. 172. Map showing the stations for the chlorinity survey (% in the Mihara Strait and the Bingo Nada. Triangles, the Mihara Strait; soft circles, the Bingo Nada.
Table 121. Monthly changes of the average chlorinity (%) of the Mihara Strait and the Bingo-Nada.
(Numerals within parentheses represent the number of stations.)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1959</td>
<td>Mihara Strait</td>
<td>—</td>
<td>—</td>
<td>18.19 (17)</td>
<td>18.09 (17)</td>
<td>17.79 (17)</td>
<td>17.82 (17)</td>
<td>17.64 (17)</td>
<td>17.52 (17)</td>
<td>17.73 (17)</td>
<td>17.74 (17)</td>
<td>17.83 (17)</td>
<td>17.83 (17)</td>
</tr>
<tr>
<td></td>
<td>Bingo Nada</td>
<td>—</td>
<td>—</td>
<td>18.11 (51)</td>
<td>18.12 (51)</td>
<td>17.61 (51)</td>
<td>17.62 (51)</td>
<td>17.09 (51)</td>
<td>17.19 (51)</td>
<td>17.65 (51)</td>
<td>17.82 (51)</td>
<td>17.59 (51)</td>
<td>17.64 (51)</td>
</tr>
<tr>
<td>1960</td>
<td>Mihara Strait</td>
<td>18.10 (17)</td>
<td>18.23 (17)</td>
<td>18.33 (17)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Bingo Nada</td>
<td>17.92 (16)</td>
<td>18.13 (16)</td>
<td>18.24 (16)</td>
<td>18.08 (39)</td>
<td>17.91 (39)</td>
<td>17.78 (39)</td>
<td>16.92 (39)</td>
<td>17.19 (39)</td>
<td>17.22 (39)</td>
<td>17.17 (39)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1961</td>
<td>Mihara Strait</td>
<td>18.35 (13)</td>
<td>18.41 (13)</td>
<td>18.47 (13)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Bingo Nada</td>
<td>18.33 (16)</td>
<td>18.58 (16)</td>
<td>18.45 (16)</td>
<td>18.25 (51)</td>
<td>17.87 (51)</td>
<td>18.03 (51)</td>
<td>17.40 (51)</td>
<td>17.74 (51)</td>
<td>17.70 (51)</td>
<td>17.38 (51)</td>
<td>17.12 (51)</td>
<td>17.44 (51)</td>
</tr>
<tr>
<td>1962</td>
<td>Mihara Strait</td>
<td>17.99 (16)</td>
<td>18.15 (16)</td>
<td>18.38 (16)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Bingo Nada</td>
<td>17.51 (16)</td>
<td>18.03 (16)</td>
<td>18.32 (16)</td>
<td>18.08 (51)</td>
<td>17.96 (51)</td>
<td>16.43 (51)</td>
<td>17.12 (51)</td>
<td>17.54 (51)</td>
<td>17.46 (51)</td>
<td>—</td>
<td>—</td>
<td>17.99 (51)</td>
</tr>
<tr>
<td>1963</td>
<td>Mihara Strait</td>
<td>18.16 (16)</td>
<td>18.50 (16)</td>
<td>18.49 (16)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Bingo Nada</td>
<td>18.23 (16)</td>
<td>18.44 (16)</td>
<td>18.45 (16)</td>
<td>18.49 (51)</td>
<td>17.81 (51)</td>
<td>16.35 (51)</td>
<td>17.07 (51)</td>
<td>16.73 (51)</td>
<td>17.40 (51)</td>
<td>17.48 (51)</td>
<td>17.63 (51)</td>
<td>17.95 (51)</td>
</tr>
<tr>
<td>1964</td>
<td>Mihara Strait</td>
<td>18.16 (16)</td>
<td>18.14 (16)</td>
<td>18.27 (16)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Bingo Nada</td>
<td>18.18 (16)</td>
<td>18.17 (16)</td>
<td>18.22 (16)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

第173図は、倉後漁港51定点における塩素濃度の幅と平均値を月別に示す。

Fig. 173. Seasonal changes of the chlorinity (%) of the surface water in the Bingo-Nada.
これにより、塩素量は各年とも2～3月に高く、6～7月に低い。また三原水道は備後灘に比較すると、塩素量は高くともいい。つぎに各年の月々の観測値を第174図に示す。これについて各月の塩素量分布の模様を操るときぎのようにになる。

Fig. 174. (1~10), (1, 2).
Maps showing monthly changes of chlorinity (‰) in the Mihara Strait and the Bingo Nada.

1月は各年ともに塩素量は備後灘西部に大きく、笠岡湾々口部に近い灘北部に小さい。ただし1963年は灘の南部に大きいが、これは幾分異例に属するであろう。

2月の塩素量は、灘西部に大きい、ことは1月と同様であるが、灘東部にみられた塩素量の小さい海域が消滅していることが著しく目だち、特に1961年ではこの海域は塩素量が大きい海域に属すると異例のようである。

3月では塩素量は、灘西部に大きく、灘南部がこれにつづく。また灘東部にふたたび小さいが、先にも述べたように、これら2、3月の塩素量は1年中で最大の月に当たる。

4月では塩素量は、灘の南部および西部に大きく、北東部の笠岡湾々口部付近に小さい。

5月では塩素量は、灘の南部に大
きく、瀬の北東部に小さい。

6月では5月と同じく、塩素量は瀬の南部に大きいが、瀬の西部でも大きくなる。

7月では6月と同様、塩素量は瀬の西部および南部に大きいが、特に塩素量変動の幅が大きいのが目立つ。これは年間平均塩素量が6、7月に最も小さいことと一致し、降雨量の影響を物語る。

8月では塩素量は、瀬の西部および南部に大きく、北東部に小さい。

9月では塩素量は8月と同様に、瀬の南部および西部に大きく、北東部に小さい。

10月では塩素量は9月とほぼ同様な傾向を示す。

11月では塩素量は10月と同じ傾向を示す。

12月の塩素量も11月とほぼ同じ傾向で、瀬の西部に大きく、南部がこれにつづき、瀬の北東部が最も小さい。

これを要するに、後瀬の塩素量は、瀬の西部および南部に大きく、瀬の北東部に小さいといえる。

Fig. 174. (3, 4).
第3項 透明度

さきに井上（1963）は、笠岡湊の透明度について報告し、透明度は水深、潮流、陸水などの影響を受けると述べた。

海図第153号により、定点ごとの水深と月別透明度との関係を1959年3月から1960年2月までの1年間について検討すると第175図のようで、5〜8月では三原水道の17定点は後藻の定点と異なり、透明度が低く明らかに環境の相違することを示す。これは後述するように、降雨量が5〜8月に多いため陸岸に近いこれらの地域の透明度が強く影響を受けるものと思われる。

Fig. 175. (1 〜 4)，(1). Relation between the sea depth and the transparency, in the Mihara Strait and the Bingo Nada. Solid circles, Mihara Strait; crosses, Bingo Nada; soft circles, vicinity of the Shisaka-shima.
Fig. 175. (2).
Fig. 175. (3).
Fig. 175. (4).

第 122 表は、月々の透明度平均値を三原水道と備後灘とに分けて示したもので、第 176 図に備後灘の透明度を示す。

Table 122. Monthly changes of the average transparency (m) in the Mihara Strait and the Bingo Nada.
(Numerals within parentheses represent number of the stations.)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1959</td>
<td>Mihara Strait</td>
<td>—</td>
<td>—</td>
<td>6.49</td>
<td>6.82</td>
<td>3.92</td>
<td>4.10</td>
<td>2.86</td>
<td>2.54</td>
<td>5.54</td>
<td>4.96</td>
<td>3.71</td>
<td>2.89</td>
</tr>
<tr>
<td></td>
<td>Bingo Nada</td>
<td>—</td>
<td>—</td>
<td>7.10</td>
<td>8.60</td>
<td>8.81</td>
<td>8.69</td>
<td>6.80</td>
<td>7.46</td>
<td>7.82</td>
<td>6.00</td>
<td>4.93</td>
<td>2.93</td>
</tr>
<tr>
<td>1960</td>
<td>Mihara Strait</td>
<td>4.73</td>
<td>6.29</td>
<td>5.00</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Bingo Nada</td>
<td>4.14</td>
<td>7.88</td>
<td>6.68</td>
<td>7.50</td>
<td>8.94</td>
<td>9.34</td>
<td>6.93</td>
<td>7.36</td>
<td>5.79</td>
<td>6.93</td>
<td>7.22</td>
<td>3.68</td>
</tr>
<tr>
<td>1961</td>
<td>Mihara Strait</td>
<td>4.61</td>
<td>5.41</td>
<td>4.51</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Bingo Nada</td>
<td>5.23</td>
<td>8.10</td>
<td>5.81</td>
<td>9.10</td>
<td>8.11</td>
<td>9.48</td>
<td>6.19</td>
<td>7.86</td>
<td>5.53</td>
<td>4.96</td>
<td>8.24</td>
<td>2.96</td>
</tr>
<tr>
<td>1962</td>
<td>Mihara Strait</td>
<td>3.67</td>
<td>5.05</td>
<td>5.88</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Bingo Nada</td>
<td>4.04</td>
<td>6.70</td>
<td>5.36</td>
<td>8.44</td>
<td>9.07</td>
<td>8.74</td>
<td>8.63</td>
<td>9.60</td>
<td>5.89</td>
<td>—</td>
<td>—</td>
<td>3.23</td>
</tr>
</tbody>
</table>

---253---
<table>
<thead>
<tr>
<th>Year</th>
<th>Mihara Strait</th>
<th>Bingo Nada</th>
<th>Mihara Strait</th>
<th>Bingo Nada</th>
</tr>
</thead>
<tbody>
<tr>
<td>'63</td>
<td>4.35 (16)</td>
<td>5.28 (16)</td>
<td>5.54</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>5.26 (51)</td>
<td>6.14 (51)</td>
<td>7.10</td>
<td>8.62 (51)</td>
</tr>
<tr>
<td></td>
<td>6.41 (51)</td>
<td>6.31 (51)</td>
<td>4.61</td>
<td>4.66 (51)</td>
</tr>
<tr>
<td></td>
<td>4.01 (51)</td>
<td>6.31 (51)</td>
<td>4.66 (51)</td>
<td>3.09 (51)</td>
</tr>
<tr>
<td>'64</td>
<td>3.51</td>
<td>4.70 (16)</td>
<td>5.01</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>6.40 (51)</td>
<td>5.30 (51)</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Fig. 176. Seasonal change of the transparency in the Bingo Nada.

第176図から透明度の変化をみると、各定点間では変化の幅はきわめて大きく、透明度は年間を通じて5、6月が最も大きく、4、8月がこれにつづいて大きく、他方12月が最も小さく、1月がこれにつづいて小さい。7月から12月までの透明度の変動は年によって幾分ずれるが、先に笠岡海で井上（1963）が調査した結果に照らすと、かなり相違することがわかる。すなわち笠岡海団船部の極大は1、5、8月に生起するが、備後灘では1月の透明度は反対に小さい。また笠岡海では4月と9月に透明度の極小が起こるというが、備後灘では4月の透明度は大きい。11月以降翌年1月までの透明度の異常とも思われる低下について現場での観察結果では、小型底曳が漁業に属する漁業漁業に塩漬ということが多いようである。すなわち，
Table 123. Yearly changes of the average transparency (m) in the Bingo Nada.

<table>
<thead>
<tr>
<th>Items</th>
<th>1959</th>
<th>'60</th>
<th>'61</th>
<th>'62 *</th>
<th>'63</th>
<th>'64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum total of the values</td>
<td>3353.6</td>
<td>3697.6</td>
<td>3989.9</td>
<td>3476.4</td>
<td>3366.1</td>
<td>4028.6</td>
</tr>
<tr>
<td>Number of station</td>
<td>489</td>
<td>548</td>
<td>577</td>
<td>500</td>
<td>601</td>
<td>612</td>
</tr>
<tr>
<td>Average</td>
<td>6,858</td>
<td>6,747</td>
<td>6,915</td>
<td>6,953</td>
<td>5,601</td>
<td>6,582</td>
</tr>
</tbody>
</table>

1963年は，1〜2月の異常期波踏来により，沿岸魚類にかなりの被害を与えたことが報告された。しかし，それにもかかわらず透明度が小さいことは，生産力の増加を意味する。鳩田港では，サヨリ，イカナゴ，サバ，マルアジ，マアナゴの豊漁が伝えられ，沿岸部の干満はアサリの大発生をみたことを付言する。

Fig. 177. (1〜10), (1). Maps showing monthly changes of the transparency (m) in the Mihara Strait and the Bingo Nada.
Fig. 177. (2, 3).
Fig. 177. (6, 7).
Fig. 177. (8, 9).

- 259 -
第177図によって、月々の透明度分布の模様を概観するとつぎのようになる。

1月の透明度は、12月につづいて小さい。1960年と1962年では満中央部を南北に透明度の小さい海域が帯状に横切るが、1961年と1963年では全海域が4 ～ 5 mの透明度を示す。この月は先にも述べた通り、戦車漕ぎ漁法による浮遊皮の影響が強い。

2月の透明度は、満の中央部から南部一帯に透明度が大きく、満の北部および西部は小さい。

3月の透明度は、年によってそれぞれ分布の様相を異にする。1959、1960、1962年では満中央部から南東部にかけて大きく、満の北部および西部で小さい。しかし1962年では、満の北東部から南部区と南東部へかけて帯状に透明度が大きく、満の北西部と南部に小さい。また1963年では、満の西部に大きく満の北東部に小さい。

4月の透明度は、満の中央部から南西部にかけて大きく、満の北部および北部に小さい。

5月の透明度は、満の中央部から南部にかけて大きく、満の北部に小さい。また1960、1961年では、満の南東部も小さい。

6月の透明度は、5月とほぼ同様である。

7月の透明度は、満の中央部が南部にかけて大きく、満の北部および北部、東南部に小さい。

8月の透明度は、1959、1961、1962年とも満中央部が最も大きく、つづいて満の南部に大きく、満の北部、北西部および東南部に小さい。

9月の透明度は、1959、1963年では水深分布の様相を異にするが、その他の年では満の中央部から南部に大きく、その他も小さい。1959年は、満の中央部が他の年に比較して大きく、平均分布にかけて広がる。また1963年は全体的に小さく、満の北西部と南部東部に大きく2分され、東南部が大きい。

10月の透明度は、満の中央部に大きく、ほぼ前月と同じ様相を示し、満の北部に小さい。
11月の透明度は，10月と似た傾向がみられ，瀬戸中央部から南部に大きく北部に小さい。
12月の透明度は，若しく小さく変動の幅も小さい。特に12月は，瀬戸の中央部に小さいことが目立つ。漁業
瀬戸の影響の強さを物語る。
以上述べた年間透明度の変化を要約すると，瀬戸中央部から南部にかけて大きく，北部ならびに西部，東部
は小さいといえよう。

第4項 懸濁質係數

水中懸濁質係數 a は最初，花岡（1954）によって報告され，さらに花岡は a の内容を発展した結果，
水中懸物の相対的平均粒子の大さを推定することができるとした。筆者らは，懸濁質係數 a を測定するこ
とによって，イカニヨ漁場の特性を検討することとした。

調査方法
調査方法は古川（1956）にしたがい，セレニウム光電池による水中照度計で海面と透明度までの照度とを
測定して求めた。

調査結果
第124表は，備後灘および三原水道の年別，月別平均懸濁質係數 a を示す。

Table 124. Monthly changes of the average suspension factor in the Mihara Strait and the
Bingo Nada.
(Numerals within parentheses represent number of stations surveyed.)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>Mihara Strait</td>
<td>—</td>
<td>—</td>
<td>0.522 (16)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Bingo Nada</td>
<td>—</td>
<td>—</td>
<td>0.434 (50)</td>
<td>0.364 (39)</td>
<td>0.330 (39)</td>
<td>0.313 (39)</td>
<td>0.368 (39)</td>
<td>0.431 (51)</td>
<td>0.478 (51)</td>
<td>—</td>
<td>0.470 (51)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>1961</td>
<td>Mihara Strait</td>
<td>—</td>
<td>—</td>
<td>0.566 (16)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Bingo Nada</td>
<td>—</td>
<td>—</td>
<td>0.459 (51)</td>
<td>0.426 (51)</td>
<td>0.422 (51)</td>
<td>0.408 (51)</td>
<td>0.449 (51)</td>
<td>0.464 (51)</td>
<td>0.563 (50)</td>
<td>0.616 (49)</td>
<td>0.456 (49)</td>
<td>0.584 (41)</td>
<td>—</td>
</tr>
<tr>
<td>1962</td>
<td>Mihara Strait</td>
<td>0.667 (15)</td>
<td>0.478 (16)</td>
<td>0.417 (16)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Bingo Nada</td>
<td>0.621 (50)</td>
<td>0.455 (51)</td>
<td>0.487 (51)</td>
<td>0.406 (51)</td>
<td>0.356 (51)</td>
<td>0.426 (51)</td>
<td>0.415 (46)</td>
<td>0.433 (50)</td>
<td>0.524 (48)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.582 (48)</td>
</tr>
<tr>
<td>1963</td>
<td>Mihara Strait</td>
<td>0.508 (13)</td>
<td>0.482 (16)</td>
<td>0.477 (16)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Bingo Nada</td>
<td>0.590 (32)</td>
<td>0.508 (46)</td>
<td>0.435 (51)</td>
<td>0.441 (51)</td>
<td>0.339 (51)</td>
<td>0.522 (50)</td>
<td>0.449 (51)</td>
<td>0.502 (51)</td>
<td>0.648 (51)</td>
<td>0.497 (51)</td>
<td>0.554 (51)</td>
<td>0.662 (46)</td>
<td>—</td>
</tr>
<tr>
<td>1964</td>
<td>Mihara Strait</td>
<td>0.553 (16)</td>
<td>0.450 (16)</td>
<td>0.445 (16)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Bingo Nada</td>
<td>0.445 (51)</td>
<td>0.411 (51)</td>
<td>0.456 (51)</td>
<td>—</td>
</tr>
</tbody>
</table>

第178図は，第124表から備後灘の平均懸濁質係數と各定点間の変動の幅を示したものです。これによ
ると懸濁質係數 a の変動は各月とも大きく，透明度と同様，定点間の差も大きいことがわかる。また備後灘
の懸濁質係數について月別推移をみると，2～8月は小さく9～1月は大きいが，これは透明度の月変化
とはほぼ逆の相関を示す。
Fig. 178. Seasonal change of the suspension factor in the Bingo Nada.

Fig. 179. Relation between the suspension factor and the transparency.
この月間の平均懸濁質係数は 0.3
～0.4 で、瀬北西部には幾分大きい
海域がみられる。しかし1963年では、
海域的な大小の傾向は上記と同じで
あるが、平均懸濁質係数は0.4～0.5
を示す。

Fig. 180. (1～7), (1, 2).
Maps showing monthly
changes of the suspen-
sion factor (a) in the
Mihara Strait and the
Bingo Nada.
Fig. 180. (5, 6).
10〜12月の懸濁質係数
この月間の資料は、1961年と1963年との2つに過ぎないが、瀬戸内海の平均懸濁質係数はほぼ0.5で、瀬戸の北部に0.6の海域がみられる。これらを月別にみると、
1月の懸濁質係数分布は、年ごとに様相を異にし、1962年では、瀬戸中央部に大きく周辺部に小さい。1963年では、瀬戸の南部に大きく、西部に小さい。また1964年では、瀬戸の北部、西部および南東部に大きいが、中央部から南部にかけて小さい。
2月の懸濁質係数分布は1月と同様、定型的な分布はなく。1962年では、瀬戸北西部に大きく、瀬戸中央部を南北に帯状にした低地域が広がる。1963年では、瀬戸の南部、東部および笠岡湾口部に大きく、西部から中央から東部に小さい。1964年では、瀬戸の北西部に大きく、中央部から東部に小さい。
3月も前月と同様に分布の様相は複雑であるが、概して、瀬戸の中央部に小さく、その周辺部に大きい。
4月の懸濁質係数分布は、かなり単純な様相を示し、1960、1961、1962年では、全域はほぼ0.3〜0.4とみなされ、中央部に小さい傾向をもつ。1963年では、瀬戸の北西部に大きく、南東部に小さい。
5月の懸濁質係数分布の様相は4月とあまり変わらないが、瀬戸の中央部は前月にくらべてさらに小さい。
6月の懸濁質係数分布の様相は5月と同様瀬戸中央部に小さい。ただし1963年では、複雑な様相を示し、瀬戸の北部に大きく、南部に小さい。
7月の懸濁質係数分布は、瀬戸の北部に大きく、南部に小さい。
8月の懸濁質係数分布は、概して瀬戸北部に大きく、南部に小さいが、1960年では瀬戸中央部に小さく、南部に大きく、1962年では瀬戸全域がほぼ均一に0.4前後を示す。
9月の懸濁質係数分布は、瀬戸の北西部および南東部に大きく、南西部に小さい。
10月の懸濁質係数分布は、瀬戸の北部に大きいが、2倍に過ぎないので、はっきりした傾向はわからない。
11月の懸濁質係数分布は、瀬戸の北部に大きく、南部に小さい。
12月の懸濁質係数分布は、複雑な様相を呈し、概して瀬戸の北部に大きく、中央部に小さい。
第125表は懸濁質係数とPlankton沈澱量との関係を、1960年3月から1964年3月までの資料について示す。

Fig. 180. (7).
これによると、Plankton 沈殿量の大小と懸濁密度係数の大小とはほとんど関係はない。すなわち、懸濁密度係数の大小に影響する粒子の大きさは、図目 XX13 を通観するものが多いことが推定される。

Table 125. Correlation table between the suspension factor (a) and the settling volume of plankton.

<table>
<thead>
<tr>
<th>Settling volume (ml/m²)</th>
<th>Month</th>
<th>0.2 l / 0.3 l / 0.4 l / 0.5 l / 0.6 l / 0.7 l</th>
<th>Settling volume (ml/m²)</th>
<th>Month</th>
<th>0.2 l / 0.3 l / 0.4 l / 0.5 l / 0.6 l / 0.7 l</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 126. Correlation table between the suspension factor and the chlorinity.

1. Mihara Strait; 2. Bingo Nada.

花岡（1954）らは、内湾の懸濁密度係数について、その分布は塩素量の分布と一致するとし、洪水 2、内湾水 1～0.4。沖合水 0.4～0.1 の値を示した。第 126 表は、三原水道と後楽道との懸濁密度係数と塩素量との関係を月別平均値で示したものである。これによると、これら海域の懸濁密度係数は、変動が複雑で内湾水の性格が強く、塩素量の分布とは必ずしも一致しないようである。

Table 126. Correlation table between the suspension factor and the chlorinity.

1. Mihara Strait; 2. Bingo Nada.
Fig. 181. Yearly distributions of illumination in vertical section across the sea from St. 48 through 62.
2. 第182図A、B、C、Dによって、定点65と79とを結ぶ横断面をみると、第181図と異なり、2m層で40%、6m層で20%を示し、幾分照度は大きい。

3. 第183図A、B、C、Dによって、定点81と95とを結ぶ横断面では、第182図に示した横断面にほぼ等しい。同様に第184〜186図に示す各横断面とも第182図と大差なく、照度は2m層で40%、6m層で20%程度に減少するが、縦の中央部では幾分照度は大きい。照度の大小は、当然浸没の大きさと近似するはずで、このことは浸没分布からもうかがわれる。

Fig 182. Yearly distributions of illumination in vertical section across the sea from St. 65 through 79.
Fig. 183. Yearly distributions of illumination in vertical section across the sea from St. 81 through 95.

Fig. 184. Yearly distributions of illumination in vertical section across the sea from St. 97 through 113.
Fig. 185. Yearly distributions of illumination in vertical section across the sea from St. 127 through 143.
Fig. 186. Yearly distributions of illumination in vertical section across the sea from St. 149 through 165.

第6項 濁 度（τ）
古川（1961）らは、具類養殖場の特性を水中懸濁物質により区分した。筆者らは、これにしたがって摂後
瀬の漁場特性の調査を行なった。

調査方法
調査は、1961年4月から1963年3月まで、さきに示した摂後瀬の51定点について行ない、調査方法は古川
（1956, 1959, 1961）らにしたがい内水研C型測度計を使用した。表層から13m層までの各定点における1
mごとの観測値の平均測度は、第187図の通りである。

調査結果
第187図によると、平均測度の変化の模様は、地域的に複雑である。しかし平均測度の変化の大要は、瀬
の中央部に小さく、瀬の北部、東部、西部に大きい傾向がみられる。
Fig. 187. (1 ~ 4), (1, 2). Maps showing monthly changes of the index of turbidity (r) in the Mihara Strait and the Bingo Nada.
第127表は、三原水道および備後水について、表層から13m層までの各1m間隔で求めた濁度の平均値を定点ごとに計算し、これを月ごとに集計して定点数で除した平均濁度である。
また第188図は、月別の平均濁度と定点間の変動の幅を図示したものである。これによると、月別の平均濁度は12月1月に大きく、4月または5月に小さいことがわかる。
Table 127. Monthly changes of the average index of turbidity (r) in the Mihara Strait and the Bingo Nada for 3 years (1961-1963). (Numerals within parentheses represent the number of stations surveyed.)

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Region</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961</td>
<td></td>
<td>Mihara Strait</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bingo Nada</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>0.30</td>
<td>0.51</td>
<td>0.54</td>
<td>0.75</td>
<td>0.90</td>
<td>0.84</td>
<td>0.88</td>
<td>0.46</td>
<td>1.44</td>
</tr>
<tr>
<td>1962</td>
<td></td>
<td>Mihara Strait</td>
<td>1.25</td>
<td>0.85</td>
<td>0.72</td>
<td>(50)</td>
<td>(51)</td>
<td>(50)</td>
<td>(51)</td>
<td>(51)</td>
<td>(49)</td>
<td>(49)</td>
<td>(49)</td>
<td>(41)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bingo Nada</td>
<td>1.17</td>
<td>0.75</td>
<td>0.93</td>
<td>(16)</td>
<td>(16)</td>
<td>(16)</td>
<td>(16)</td>
<td>(16)</td>
<td>(16)</td>
<td>(16)</td>
<td>(16)</td>
<td>(16)</td>
</tr>
<tr>
<td>1963</td>
<td></td>
<td>Mihara Strait</td>
<td>0.92</td>
<td>0.79</td>
<td>0.71</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bingo Nada</td>
<td>0.99</td>
<td>0.74</td>
<td>0.76</td>
<td>(31)</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
</tr>
</tbody>
</table>

Fig. 188. Monthly changes of the index of turbidity in the Bingo Nada.
第189—194図は、1961年4月から1963年3月まで行なった渾度調査資料から、これを年別に2群に分けて、各定点別に渾度の年間平均値を求め、儒後観における横断面の渾度分布を示したものである。なお1962年10，11月は欠調した。

![Diagram](image)

Fig. 189. Yearly distribution of the index of turbidity in vertical section across the sea from St. 48 through 62. A, April 1961-March 1962; B, April 1962-March 1963.
Fig. 190. Yearly distribution of the index of turbidity in vertical section across the sea from St. 65 through 79. A, April 1961-March 1962; B, April 1962-March 1963.
Fig. 191. Yearly distribution of the index of turbidity in vertical section across the sea from St. 81 through 95. A, April 1961-March 1962; B, April 1962-March 1963.
Fig. 192. Yearly distribution of the index of turbidity in vertical section across the sea from St. 97 through 113. A, April 1961-March 1962; B, April 1962-March 1963.
Fig. 193. Yearly distribution of the index of turbidity in vertical section across the sea from St. 127 through 143. A, April 1961-March 1962; B, April 1962-March 1963.
Fig. 194. Yearly distribution of the index of turbidity in vertical section across the sea from St. 149 through 165. A, April 1961-March 1962; B, April 1962-March 1963.
なわち、第2線では、第1線にみられた豊富な内水と思われる渦は消滅し、全般的に濃度は第1線より小さい。
横断面第3線
第3線では第2線よりも濃度はさらに小さく、特に河川中央部は小さく、全般的な傾向は第2線と同様である。
横断面第4線
第4線では第3線よりも濃度はさらに小さく、第2、3線と同様に、河川の上流に漸分大きい傾向を示す。
横断面第5線
第5線では、第4線とほぼ同様な濃度分布を示すが、第4線よりも漸分小さい。
横断面第6線
第6線では、濃度は第5線よりも小さくなるが、分布の様子は変化しない。
ここで注意すべきことは、第2線から第6線まで共通して東部に濃度の大きい傾向を認めるが、これは調査点が島海岸近接することによる。いずれにしても、濃度は沿岸部に大きく、河川中央部に向かって小さいが、河川部では豊富な内水がかなり強いことを示し、濃度は全般的に河川部に大きく、南部に小さいといえよう。

第7項 plankton
plankton 埴食魚類にとって、plankton 量の多寡は重要な生態学的意義をもつが、イカナゴではおもな側料は底鰭類、毛鱧類である。
1959年8月から1960年7月までの資料の動物性 plankton 調査結果から弘田（1961）は、おもなものは硅藻類で、時として noctiluca、doliolum が数多く示すと述べ、plankton 平均沈殿量の季節的変化について、7、8月に沈殿量は増加し9月に最小値を示すと報告した。また plankton 量の増加は、河川から補給される栄養塩の増加に原因するもので、本調査地域の南西端部（三原水道）は、都市、工場排水の影響を受け plankton 沈殿量は少ないが、これは河川からの栄養塩の影響よりも、人為的汚濁の影響

Fig. 195. Seasonal change of the settling volume of plankton (mL/m³). 　—282—
が大きいためである。調査結果は Plankton の総量の季節的変化について述べる。

調査結果

偏流頂点における1959年3月から1964年3月までの Plankton 沈降量について、月別変異の幅および平均値を示すと、第195図のようである。

第196図は、偏流頂北部の受水地域13地点の観測資料（後述）から得た月平均降雨量と Plankton 沈降量との変動の模様を示す。

Fig. 196. Relationship between the average amount of settling volume of plankton and the amount of rainfall. Solid line, broken line, plankton.

これによると、1960年までの降雨量の大小は、Plankton の増減に関係することを示すが、1961年以降では両者の相関は認められない。これらの原因は不明で対照的の測を試しないが、海水汚濁の影響を無視できないであろう。

第128、129表は、偏流頂と三原水道との Plankton 沈降量ならびに Plankton 排水量を示す。

Plankton 沈降量と Plankton 排水量との質的関係を検討するために、これら両者の相互関係を求めると第197図のようになる。これによると、1962年9、10月以外では両者はほぼ直線的な関係を示し、質的関係には差はあまりないものと推定される。ここで1969年9、10月の測定結果は幾分ずれるが、測定者が交替したために生じた誤差で、その後の測定には注意したことと付記する。

第198—202図は、偏流頂の年間 Plankton 平均沈降量を示す。これによると、年ごとに Plankton の増減はみられるが、分布の様相はほぼ共通していることがわかる。すなわち、偏流頂では、Plankton 沈降量は頂の北東部に大きく、頂の南部、西部に小さいが、これは屯岡湾内水の流動による栄養塩類の補給によるものと思われる。

つきに、Plankton 沈降量を月別に模式図で示すと第203図のようである。
Table 128. Monthly changes of the average settling volume of plankton (ml/m^3) in the Mihara Strait and the Bingo Nada.
(Numerals within parentheses represent the number of stations surveyed.)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1959</td>
<td>Mihara</td>
<td>Strait</td>
<td>17.2</td>
<td>—</td>
<td>—</td>
<td>22.0</td>
<td>15.0</td>
<td>37.9</td>
<td>46.6</td>
<td>90.3</td>
<td>4.5</td>
<td>4.1</td>
<td>5.0</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td>Bingo</td>
<td>Nada</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>26.9</td>
<td>22.7</td>
<td>15.4</td>
<td>30.2</td>
<td>93.7</td>
<td>104.2</td>
<td>25.8</td>
<td>16.9</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.8</td>
<td>5.5</td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'60</td>
<td>Mihara</td>
<td>Strait</td>
<td>19.5</td>
<td>14.6</td>
<td>9.4</td>
<td>37.8</td>
<td>14.2</td>
<td>14.3</td>
<td>106.7</td>
<td>99.4</td>
<td>48.9</td>
<td>18.5</td>
<td>9.0</td>
<td>7.3</td>
</tr>
<tr>
<td></td>
<td>Bingo</td>
<td>Nada</td>
<td>(51)</td>
<td>(39)</td>
<td>(39)</td>
<td>(39)</td>
<td>(39)</td>
<td>(39)</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td>(49)</td>
<td>(51)</td>
<td>(49)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.1</td>
<td>12.2</td>
<td>35.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'61</td>
<td>Mihara</td>
<td>Strait</td>
<td>17.8</td>
<td>12.9</td>
<td>39.4</td>
<td>16.0</td>
<td>22.9</td>
<td>12.3</td>
<td>114.1</td>
<td>12.0</td>
<td>33.0</td>
<td>7.9</td>
<td>7.3</td>
<td>22.5</td>
</tr>
<tr>
<td></td>
<td>Bingo</td>
<td>Nada</td>
<td>(41)</td>
<td>(50)</td>
<td>(51)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.1</td>
<td>28.7</td>
<td>10.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'62</td>
<td>Mihara</td>
<td>Strait</td>
<td>102.5</td>
<td>53.1</td>
<td>9.5</td>
<td>43.3</td>
<td>12.7</td>
<td>16.6</td>
<td>54.2</td>
<td>26.3</td>
<td>36.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bingo</td>
<td>Nada</td>
<td>(51)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.2</td>
<td>16.8</td>
<td>9.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'63</td>
<td>Mihara</td>
<td>Strait</td>
<td>26.4</td>
<td>37.8</td>
<td>26.8</td>
<td>24.4</td>
<td>26.4</td>
<td>12.9</td>
<td>49.8</td>
<td>21.9</td>
<td>22.1</td>
<td>12.3</td>
<td>9.8</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>Bingo</td>
<td>Nada</td>
<td>(16)</td>
<td>(51)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16.6</td>
<td>22.0</td>
<td>9.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'64</td>
<td>Mihara</td>
<td>Strait</td>
<td>46.1</td>
<td>36.7</td>
<td>31.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bingo</td>
<td>Nada</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>'65</td>
<td>Mihara</td>
<td>Strait</td>
<td>8.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bingo</td>
<td>Nada</td>
<td>(51)</td>
<td></td>
</tr>
</tbody>
</table>

Table 129. Monthly changes of the average displaced volume of plankton (ml/m^3) in the Mihara Strait and the Bingo Nada.
(Numerals within parentheses represent the number of stations surveyed.)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1959</td>
<td>Mihara</td>
<td>Strait</td>
<td>3.6</td>
<td>4.6</td>
<td>2.5</td>
<td>6.5</td>
<td>10.0</td>
<td>15.0</td>
<td>15.0</td>
<td>2.3</td>
<td>3.0</td>
<td>2.3</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bingo</td>
<td>Nada</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
<td>2.7</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'60</td>
<td>Mihara</td>
<td>Strait</td>
<td>9.2</td>
<td>7.3</td>
<td>4.6</td>
<td>6.1</td>
<td>5.1</td>
<td>3.7</td>
<td>16.0</td>
<td>17.1</td>
<td>15.7</td>
<td>16.2</td>
<td>5.1</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td>Bingo</td>
<td>Nada</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td>(39)</td>
<td>(39)</td>
<td>(39)</td>
<td>(39)</td>
<td>(39)</td>
<td>(51)</td>
<td>(49)</td>
<td>(51)</td>
<td>(49)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.7</td>
<td>4.7</td>
<td>4.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'61</td>
<td>Mihara</td>
<td>Strait</td>
<td>6.6</td>
<td>4.1</td>
<td>4.2</td>
<td>4.9</td>
<td>6.3</td>
<td>4.6</td>
<td>13.6</td>
<td>4.0</td>
<td>8.4</td>
<td>4.6</td>
<td>4.6</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td>Bingo</td>
<td>Nada</td>
<td>(24)</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td>(49)</td>
<td>(49)</td>
<td>(49)</td>
<td>(49)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.5</td>
<td>5.9</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'62</td>
<td>Mihara</td>
<td>Strait</td>
<td>15.4</td>
<td>8.6</td>
<td>4.8</td>
<td>7.4</td>
<td>5.0</td>
<td>4.7</td>
<td>7.4</td>
<td>5.7</td>
<td>9.2</td>
<td></td>
<td></td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td>Bingo</td>
<td>Nada</td>
<td>(51)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.2</td>
<td>4.3</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'63</td>
<td>Mihara</td>
<td>Strait</td>
<td>4.7</td>
<td>8.3</td>
<td>5.9</td>
<td>5.7</td>
<td>7.0</td>
<td>4.5</td>
<td>12.2</td>
<td>7.0</td>
<td>6.8</td>
<td>5.3</td>
<td>4.0</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>Bingo</td>
<td>Nada</td>
<td>(41)</td>
<td>(50)</td>
<td>(51)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.4</td>
<td>5.2</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'64</td>
<td>Mihara</td>
<td>Strait</td>
<td>7.5</td>
<td>6.6</td>
<td>6.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bingo</td>
<td>Nada</td>
<td>(51)</td>
<td>(51)</td>
<td>(51)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

--- 284 ---
Fig. 197. Relation between the settling volume and the displaced volume of plankton. Solid circles, Bingo Nada; crosses, Mihara Strait.

Fig. 198. Geographical distribution of the average settling volume of plankton m^3/m^3 in 1959.
Fig. 199. Geographical distribution of the average settling volume of plankton ml/m³ in 1960.

Fig. 200. Geographical distribution of the average settling volume of plankton ml/m³ in 1961.
Fig. 201. Geographical distribution of the average settling volume of plankton m^3/m^3 in 1962.

Fig. 202. Geographical distribution of the average settling volume of plankton m^3/m^3 in 1963.
Fig. 203. (1—10), (1, 2). Maps showing distribution of the settling volume of plankton in the Mihara Strait and the Bingo Nada (m²/m³).
Fig. 203. (3, 4).
Fig. 203. (5, 6).
Fig. 203. (7, 8).
Fig. 203. (9, 10).
第203図に示す月別の Plankton 沈降量分布の模様から、徳後源における一般的な傾向を月別に探ることにする。

1960年から1964年1月までの各年の1月の Plankton 沈降量を第125表によって比較すると、1962年1月1964年1月、1963年1月1961年の頃となる。このことは、第203図からもうかがわられる。Plankton 沈降量の大きい1962年1月では域全域に大きく、特に南部で大きな値を示した。また Plankton 沈降量の小さい1960年、1961年では、全域に小さい値を示すが、特に域西部と三原水道で小さく、1963年、1964年1月でも域の南部と三原水道で小さく、域の北部で大きい。さらに1964年1月では、1962年と同じ様、域の南部に大きい。また1955年1月では1.8ml/m³を示し（未発表）、これら1月の沈降量の大小はイカナゴの発生量と逆の傾向が強い。

4月の Plankton 平均沈降量は、1962年1960年1959年1963年の順位である。これら各年の Plankton 沈降量の分布は、1月、2月、3月と著なり、相互に似た分布を示す。すなわち域の北部に大きく、域西部に小さくて、1963年同様、域の西部と東部にほぼ同じ程度に小さい。

5月の Plankton 平均沈降量の順位は、1963年1961年1959年1960年1962年の順位である。分布の模様は概して、域の北部に大きく、域西部に小ささい。しかし、Plankton 平均沈降量の最も小さい1962年では、分布の模様は大きく、変動の幅が大きく、域西部に小さくその他の地域で大きい。

7月の Plankton 平均沈降量の順位は1961年1960年1959年1962年の順位である。分布の模様は8月および9月にかけて変化である。7月の沈降量分布は、概して域の南部に小さい、域北部に大きい。

11月の Plankton 平均沈降量の順位は（1962年欠測）1963年1960年1959年1961年の順位である。全般に、先月同様、変動の差が小さい。Plankton 沈降量分布の模様は1961年ではわずかに域の西部に大きく、ほとんど全調査海域に小さいが、その他の年では、互いに酷似した分布を示す。すなわち、域の中央部を域南部に帯状をな
して大きく、この両側に小さい。

第8節 ヤムシ類

1. ヤムシ類の季節的変化と分布

ヤムシ類は、Diatom, Protozoa, Copepoda などを餌とするが、イカナゴ親子をも捕食する。この事例は、1959年1月3日、2月4日：1965年2月1日に得たが、前者については、1962年のイカナゴ研究会資料に公表した。その後浜田（1965）は、Sagitta crassa（TOKIOKA）がイカナゴ親魚を捕食することについて述べ、ヤムシ類捕食の必要性を強調した。他方イカナゴ親魚は、ヤムシ類を捕食するが両者は Prey-predator の関係にあるといえる。筆者からは1959年以降、ヤムシ類の出現に注意し観察を続けた。なお瀬戸内海堆積海場のヤムシ類については、門、弘田（1957）、村上（1959）、弘田（1961）などの報告がある。

調査結果

ヤムシ類の堆積海場における月々の増減の模様を示すと第130表のようになる（垂直及び資料）。

Table 130. Monthly changes of the average number of Chaetognatha collected in the Mihara Strait and the Bingo Nada.
(Numerals within parentheses represent the number of stations surveyed.)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1959</td>
<td>Mihara Strait</td>
<td>—</td>
</tr>
<tr>
<td>Bingo Nada</td>
<td>—</td>
<td>—</td>
<td>6.7</td>
<td>(17)</td>
<td>57.1</td>
<td>(17)</td>
<td>20.8</td>
<td>(17)</td>
<td>52.3</td>
<td>(17)</td>
<td>118.1</td>
<td>(17)</td>
<td>60.1</td>
<td>(17)</td>
</tr>
<tr>
<td>60</td>
<td>Mihara Strait</td>
<td>10.5</td>
<td>—</td>
<td>15.1</td>
<td>(17)</td>
<td>1.2</td>
<td>(17)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Bingo Nada</td>
<td>—</td>
<td>—</td>
<td>10.4</td>
<td>(51)</td>
<td>63.8</td>
<td>(51)</td>
<td>27.2</td>
<td>(51)</td>
<td>142.7</td>
<td>(51)</td>
<td>186.2</td>
<td>(51)</td>
<td>112.8</td>
<td>(51)</td>
</tr>
<tr>
<td>61</td>
<td>Mihara Strait</td>
<td>5.6</td>
<td>—</td>
<td>8.9</td>
<td>(13)</td>
<td>8.3</td>
<td>(16)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Bingo Nada</td>
<td>—</td>
<td>—</td>
<td>52.7</td>
<td>(51)</td>
<td>29.4</td>
<td>(51)</td>
<td>14.1</td>
<td>(51)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>62</td>
<td>Mihara Strait</td>
<td>17.9</td>
<td>—</td>
<td>16.5</td>
<td>(24)</td>
<td>11.3</td>
<td>(51)</td>
<td>22.6</td>
<td>(51)</td>
<td>27.6</td>
<td>(51)</td>
<td>62.0</td>
<td>(51)</td>
<td>105.2</td>
</tr>
<tr>
<td>Bingo Nada</td>
<td>17.6</td>
<td>—</td>
<td>38.3</td>
<td>(16)</td>
<td>33.1</td>
<td>(16)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>63</td>
<td>Mihara Strait</td>
<td>16.8</td>
<td>—</td>
<td>20.1</td>
<td>(16)</td>
<td>26.1</td>
<td>(16)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Bingo Nada</td>
<td>35.4</td>
<td>—</td>
<td>33.2</td>
<td>(41)</td>
<td>26.1</td>
<td>(50)</td>
<td>5.4</td>
<td>(51)</td>
<td>13.8</td>
<td>(51)</td>
<td>21.5</td>
<td>(50)</td>
<td>49.6</td>
<td>(51)</td>
</tr>
<tr>
<td>64</td>
<td>Mihara Strait</td>
<td>27.2</td>
<td>—</td>
<td>46.5</td>
<td>(16)</td>
<td>26.0</td>
<td>(16)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Bingo Nada</td>
<td>67.0</td>
<td>—</td>
<td>73.2</td>
<td>(51)</td>
<td>45.6</td>
<td>(51)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

第130表を図示すると第204図となり、これによって月々の変動をみると、さき弘田（1961）が述べたように7～8月と11～12月とのほぼ2回、出現の山が認められる。

つぎに年別に各定点ごとの平均値を求め、ヤムシ類分布の様相をみると第205—209図のようである。なお注意を要することは、第129表に示す通り、欠測月は除いて平均した。
Fig. 204. Monthly changes of the average number of Chaetognatha, amount of settling volume of plankton and chlorinity. Solid circles, Chaetognatha; soft circles, plankton; crosses, chlorinity.

Fig. 205. Geographical distribution of the average number of Chaetognatha collected in 1959 (No/m³).
Fig. 206. Geographical distribution of the average number of Chaetognatha collected in 1960 (No/m³).

Fig. 207. Geographical distribution of the average number of Chaetognatha collected in 1961 (No/m³).
Fig. 208. Geographical distribution of the average number of Chaetognatha collected in 1962 (No/m³).

Fig. 209. Geographical distribution of the average number of Chaetognatha collected in 1963 (No/m³).
第205—209図によると、弘田（1961）も指摘したようにヤムシ類は、偏後灘の北東部に大きく、これについて東部寄りに大きく、西南部および北西部に小さい。またヤムシ類の増減が塩分量と相関するが、第210図は、月別平均ヤムシ類採取数と塩素量との関係を示したものである。これによると、塩分量の増加はヤムシ類の減少となるが、塩素量18％以下では、変動の幅が著しく大きい。

第211図は、各年の月別のヤムシ類分布を示すもので、これによって月別の変動を概観する。

Fig. 210. Relation between the number of Chaetognatha and the chlorinity.

Fig. 211. (1—9), (1). Maps showing monthly distribution of Chaetognatha in the Mihara Strait and the Bingo Nada (No./m³).
Fig. 211. (2, 3).
Fig. 211. (4, 5).
Fig. 211. (8, 9).
1月のヤムシ類の分布は、年ごとに異なりがこれらに共通していることは、外縁部が北東部に大きく、西部に小さい。また西の中央部は南部とともに変動が激しい。
2月のヤムシ類の分布は、1月よりもさらに明らかに北東部に大きく西部に小さい傾向を示す。しかし、1954年では、瀬の中央部が最も大きく、その他の年と異なる。
3月のヤムシ類の分布は、全般的に変動は小さく、1962、1964年ではその他の年よりも減少が大きい。分布の模様は、瀬の北部または北東部に大きく、その他の年では小さい。
4月のヤムシ類の分布は、3月と同様に変動は小さく、分布の模様は、瀬北部に大きく、南部、東部に小さい。1961年では、瀬の西部中央付近に大きいが、これは注意すべき現象と思われる。
5月のヤムシ類の分布は、3月、4月よりも変動は大きい。特にこれまでと異なり、1963年を除くと1959、1961、1962年ともに瀬の西部に大きく、東部、南部に小さい。このことは、ヤムシ類の移動に関して新しい事例といえよう。
6月のヤムシ類の分布は、1963年では変動は小さいが、その他の年は大きな。全般的に周始めわ瀬の西部および南東部に大きく、北東部または南西部に小さいが、塩分濃度との相関が、あまり認められないことは注意を要する。
7月のヤムシ類の分布は、定点間の変動がかなり激しい。1959年では、瀬の北部から東部に大きく西部に小さい。1961年では、これとはほぼ同様であるが、瀬の西部近辺は大きい水深がみられる。1962年では、瀬の南部、東部に大きく、北西部に小さいが、1963年では、瀬の北東部と南東部に大きく、中央部から西部にかけて小さい。
8月のヤムシ類の分布は、7月と同様、変化の模様は複雑である。1959年では、瀬の中央部が南北に帯状をなして大きく、西部に小さい。1961年では、瀬の中央部に大きく南部に小さいが、1962年では1961年と異なり、瀬の南部に大きく北側に小さい。また1963年では、瀬の南部および南東部に大きく、北部および北西部に小さい。
9月のヤムシ類の分布は、1959年では、瀬西部から中央部を通って北東部までが大きく、北西部および南部に小さい。1961年では、瀬の北部と中央部にやや大きく、西部に小さい。1962年では、瀬の西部と北東部に大きく、北西部に小さい。このことは1962年では、前月に引き続き他の年と異なる。1963年では、瀬の北部、北西部および南西部に大きく、瀬の中央部を東西に小さい。
10月のヤムシ類の分布は、変動が大きい。1959年では瀬の中央部に大きく、1960、1961年ではともに瀬の北部に大きく、南部に向って小さい。1963年ではこれらの年と異なり、瀬の西部に大きく東部に小さい。
11月のヤムシ類の分布は、1959年では瀬の北東部に大きく、南西部に小さいが、1960年では、瀬の西部に大きく、東部に小さい。1961年では1960年とはほぼ同じ分布を示し、1963年では、瀬の北部および南部に大きい。
12月のヤムシ類の分布は、1959年および1962年では変動が大きく、1963年がこれにつづく。すなわち1959年では、瀬の北部が特に大きく、これを中心にして東西両側に大きく、南部および三原の道に小さい。1960年では、瀬の北部と東部に大きく、南西部に小さい。1961年では、瀬の南側の一部で大きいが、全域では変動が小さい。1962年では、瀬の北部に大きく、東部がこれにつづき、西部は全般に小さい。1963年では、瀬の中央部から東部に大きく、西部に小さい。村上（1959）の論文（1961）、は、ヤムシ類の採捕数によって水深が区分されることを報告した。1959年3月から1964年3月までのかなり長期にわたる観測結果によると、外縁部におけるヤムシ類の分布は、1961年を除くと瀬の北部に大きく、ついで瀬の東部に大きく、瀬の西部に小さい傾向を示す。しかし月に

Fig. 212. Yearly changes of the average number Chaetognatha.
より分布の様相は異なり、偏後淵における水塊混合の複雑さを物語る。
つきにヤムシ類の年間平均1点当たりの採択数を、偏後淵の51点について求めて、第212図のようになる。ただし1959年は1、2月；1960年は4～9月；1962年は10、11月の採集を欠く。

イカナギおよびカテゴリアイビワと共にヤムシ類を捕食する魚類であることは興味深い。また村上1960年1月12日の観測資料についてヤムシ類の直線分布を示し、分布の傾向は、偏後を大きく表層に小さいと述べた。ヤムシ類の分布について村上（1959）は、夏～秋では表層に少なく、その他では表層に多く、熱帯の相異によって、光に対する感受性が異なることに基盤すると述べた。

第213図は、三原水道と偏後淵の両海域における1月の年別ヤムシ類採択数と水温との関係を示す。

これによると、1月のヤムシ類は両海域とも1963年を除くと、水温の低下は、ヤムシ類の採択数の減少傾向を示し、寒冬年のヤムシ類はイカナギ稚仔捕数とは逆に減少する。

さらに三原水道と偏後淵の両海域における各年とも共通した点で1月の欠測のない37点について、水温の高低がその地点でのイカナギ稚仔採択数の大小と逆の関係があると述べた。したがってヤムシ類採択数の大小が水温の高低と逆の関係にあるとすれば、当然イカナギ稚仔採択数の大小は、ヤムシ類採択数の大小と逆の相関を示すはずである。第214図は各年の1月について、前述の37地点のイカナギ採択数とヤムシ類採択数との関係を示す。

これによると、ヤムシ類採択数の増減は、水温の高低と比較して、イカナギ稚仔採択数の大小との相関は、あまり明りょうではない。いずれにしても、これら資料の検討は今後多くの検証を必要とするものと思われる。

2. ヤムシ類の種類別分布

弘田（1961）によれば、偏後淵に出現するヤムシ類は、Sagitta enflata, Sagitta crassa の2種類で、後者をCollarette の伸縮で、さらに4区分した。

筆者らは、1960年10月から1964年3月まで採集したヤムシ類の種類別出現数を調べた。ただしS. crassaはCollaretteの形によって3型とし、弘田の区分からB、C型を一つにして中間型とした。第131表は月別の分類結果を示すもので、S. enflata, S. crassaは弘田も指摘したように、前者の出現時期は9月から翌年2月で、後者の出現時期は1月から3月に限られた。

Fig. 213. Relation between the number of Chaetognatha and the water temperature. Solid circles, Bingo Nada ; soft circles, Mihara Strait.

Fig. 214. Yearly changes of the total number of sand-lance larva caught at the 37 stations in the Mihara Strait and the numbers of Chaetognatha caught in the Mihara Strait and the Bingo Nada respectively in January. Solid circles, sand-lance larva ; soft circles, Chaetognatha of the Mihara Strait ; crosses, Chaetognatha of the Bingo Nada.
Table 131. Monthly changes of the number of Chaetognatha by species, caught in the Mihara Strait and the Bingo Nada.
Remarks: E, Sagitta enflata; N, S. naikaiensis; I, S. crassa.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td>N</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1960</td>
<td>No. of individuals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. of stations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. of stations with Sagitta caught</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. of individuals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Percentage of species</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1961</td>
<td>No. of individuals</td>
<td>30.4</td>
<td>573.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>No. of stations</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>No. of stations</td>
<td>15</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>No. of stations with Sagitta caught</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. of individuals</td>
<td>0.6</td>
<td>11.5</td>
<td></td>
<td></td>
<td>8.2</td>
</tr>
<tr>
<td></td>
<td>Percentage of species</td>
<td>5.03</td>
<td>94.97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1962</td>
<td>No. of individuals</td>
<td>37.8</td>
<td>2277.9</td>
<td>1776.3</td>
<td>201.8</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>No. of stations</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>No. of stations with Sagitta caught</td>
<td>22</td>
<td>80</td>
<td>61</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>No. of individuals</td>
<td>0.6</td>
<td>28.5</td>
<td>22.2</td>
<td>2.5</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Percentage of species</td>
<td>0.88</td>
<td>53.05</td>
<td>41.73</td>
<td>4.70</td>
<td>0.13</td>
</tr>
<tr>
<td>1963</td>
<td>No. of individuals</td>
<td>0</td>
<td>1564.7</td>
<td>435.6</td>
<td>32.6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>No. of stations</td>
<td>63</td>
<td>63</td>
<td>63</td>
<td>63</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>No. of stations with Sagitta caught</td>
<td>0</td>
<td>63</td>
<td>38</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>No. of individuals</td>
<td>25.2</td>
<td>6.9</td>
<td>0.8</td>
<td>0.8</td>
<td>22.8</td>
</tr>
<tr>
<td></td>
<td>Percentage of species</td>
<td>76.45</td>
<td>21.01</td>
<td>2.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1964</td>
<td>No. of individuals</td>
<td>0</td>
<td>4099.9</td>
<td>57.1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>No. of stations</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>No. of stations with Sagitta caught</td>
<td>0</td>
<td>80</td>
<td>14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>No. of individuals</td>
<td>51.2</td>
<td>7.1</td>
<td></td>
<td></td>
<td>62.8</td>
</tr>
<tr>
<td></td>
<td>Percentage of species</td>
<td>98.63</td>
<td>1.37</td>
<td></td>
<td></td>
<td>99.97</td>
</tr>
<tr>
<td>Year</td>
<td>Items</td>
<td>Month</td>
<td>May</td>
<td>June</td>
<td>July</td>
<td>Aug.</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td>N</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>1960</td>
<td>No. of individuals</td>
<td>7.8</td>
<td>985.4</td>
<td>728.6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1961</td>
<td>No. of stations</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>No. of stations with Sagitta caught</td>
<td>4</td>
<td>49</td>
<td>44</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>No. of individuals</td>
<td>0.2</td>
<td>19.3</td>
<td>14.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Percentage of species</td>
<td>0.45</td>
<td>57.23</td>
<td>42.32</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1962</td>
<td>No. of individuals</td>
<td>0</td>
<td>704.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>No. of stations</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>No. of stations with Sagitta caught</td>
<td>0</td>
<td>47</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>No. of individuals</td>
<td>0</td>
<td>13.8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Percentage of species</td>
<td>100.00</td>
<td>99.66</td>
<td>0.34</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1963</td>
<td>No. of individuals</td>
<td>0</td>
<td>704.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>No. of stations</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>No. of stations with Sagitta caught</td>
<td>0</td>
<td>47</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>No. of individuals</td>
<td>0</td>
<td>13.8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Percentage of species</td>
<td>100.00</td>
<td>99.66</td>
<td>0.34</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1964</td>
<td>No. of individuals</td>
<td>0</td>
<td>704.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>No. of stations</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>No. of stations with Sagitta caught</td>
<td>0</td>
<td>47</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>No. of individuals</td>
<td>0</td>
<td>13.8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Percentage of species</td>
<td>100.00</td>
<td>99.66</td>
<td>0.34</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------------</td>
<td>-------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>Species</td>
<td></td>
<td>E N I C</td>
<td>E N I C</td>
<td>E N I C</td>
<td>E N I C</td>
</tr>
<tr>
<td>1960</td>
<td>No. of individuals</td>
<td></td>
<td>160.1 1325.5 4.1 0</td>
<td>619.2 724.9 0 0</td>
<td>334.1 1126.8 0 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. of stations</td>
<td></td>
<td>49 49 49 49</td>
<td>51 51 51 51</td>
<td>49 49 49 49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. of stations with Sagitta caught</td>
<td></td>
<td>31 49 2 0</td>
<td>50 51 0 0</td>
<td>45 49 0 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. of stations</td>
<td></td>
<td>3.3 27.1 0.8</td>
<td>12.1 14.2</td>
<td>6.8 23.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Percentage of species</td>
<td></td>
<td>10.75 88.98 0.27</td>
<td>46.07 53.93</td>
<td></td>
<td>22.87 77.13</td>
</tr>
<tr>
<td>761</td>
<td>No. of individuals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13.7 440.9 0 0</td>
</tr>
<tr>
<td></td>
<td>No. of stations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23 23 23 23</td>
</tr>
<tr>
<td></td>
<td>No. of stations with Sagitta caught</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7 23 0 0</td>
</tr>
<tr>
<td></td>
<td>No. of individuals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.6 19.2</td>
</tr>
<tr>
<td></td>
<td>Percentage of species</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.01 96.99</td>
</tr>
<tr>
<td>762</td>
<td>No. of individuals</td>
<td></td>
<td>3.6 5283.4 7.1 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. of stations</td>
<td></td>
<td>48 48 48 48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. of stations with Sagitta caught</td>
<td></td>
<td>2 48 1 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. of individuals</td>
<td></td>
<td>0.1 110.1 0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Percentage of species</td>
<td></td>
<td>0.07 99.80 0.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>763</td>
<td>No. of individuals</td>
<td></td>
<td>40 4743.1 8.9 0</td>
<td>72.5 2862.9 36.8 0</td>
<td>270.7 3413.7 11.0 0</td>
<td>120.6 4112.5 3.0 0</td>
</tr>
<tr>
<td></td>
<td>No. of stations</td>
<td></td>
<td>51 51 51 51</td>
<td>51 51 51 51</td>
<td>51 51 51 51</td>
<td>51 51 51 51</td>
</tr>
<tr>
<td></td>
<td>No. of stations with Sagitta caught</td>
<td></td>
<td>2 51 3 0</td>
<td>29 51 15 0</td>
<td>43 51 5 0</td>
<td>24 51 2 0</td>
</tr>
<tr>
<td></td>
<td>No. of individuals</td>
<td></td>
<td>0.1 93.0 0.2</td>
<td>1.4 56.1 0.7</td>
<td>5.3 66.9 0.2</td>
<td>2.4 80.6 0.1</td>
</tr>
<tr>
<td></td>
<td>Percentage of species</td>
<td></td>
<td>0.08 99.73 0.19</td>
<td>2.44 96.32 1.24</td>
<td>7.33 92.38 0.29</td>
<td>2.85 97.08 0.07</td>
</tr>
<tr>
<td>764</td>
<td>No. of individuals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. of stations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. of stations with Sagitta caught</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. of individuals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Percentage of species</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
第215図は、第131表から1定点当たりの平均捕数を示したもので、Sagitta naikaiensisが最も大きいことを物語る。

Fig. 215. Monthly changes of the number of Chaetognatha by species per station (No./m³). Crosses, Sagitta enflata: soft circles, S. crassa: triangles, intermediate form: solid circles, S. naikaiensis.

1. Sagitta enflata (Grassi)

本種は外洋性ヤマツで、村上 (1959) は高らん種であると述べ、弘田 (1961) は備後礁の東側に多く出現したが、高らん海嶺である備後礁の北西部三原水道域では出現しなかったと述べた。また村上は瀬戸内海における黒潮の強さは、1年間に採捕された S. enflata の個体数によって検出されるという。しかしこれらの資料のうち各年の1月、2月の採捕数と塩分との関には相関はみられない。

第216図は、S. enflata の分布を示す。

この図から各年の出現の様子をみると、弘田 (1961) がいうように概して備後礁の東側に多いが、南部および西部にも出現する。村上 (1959) は、S. enflata を含む Chaetognatha は、瀬戸内海西部の反張水道域では、瀬戸内海東部の

Fig. 216. (1, 2), (1). Maps showing monthly distribution of the number of Sagitta enflata (Grassi) No./m³, in the Mihara Strait and the Bingo Nada.
紀伊水道にくらべて流流入河川が少ないから、量的に劣り、筍溝湾は豊後水道系に属する海城であると述べた。

第216図に示された S. enflata の複雑な分布様相からは、村上のように豊後溝垣を豊後水道系と断定することは困難で、むしろ東からの潮汐によって遠ざかったとする弘田の推定を裏付ける。

2. Sagitta crassa (Tokioko)

S. crassa は、弘田（1961）の報告および第129表からもわかるように、豊後溝のヤムシ類の大部分を占める。

S. crassa を Collarette の形によって 3 分に区分し、Collarette が体の半分をおおうものを S. crassa とし、Collarette が首のまわりに極限されるものを S. naikaiensis とし、それ以外のものを Intermediate form とした。

i） S. crassa は弘田（1961）によると、低温、低塩分の海域で豊富に出現し、狭温性、狭塩性であるという。

第217図は S. crassa の月別分布を示す。これによると、S. crassa の分布は、溝の西側に小さく、溝の中央部または東部に大きい。また、1962年5月にもわずかであるが出現したことは、さきに弘田（1961）が1959年6月、7月に観察した記録に基づくものであり、S. crassa の生活史について研究が望まれる。

ii） S. naikaiensis は第129表からもわかるように、大部分のヤムシ類がこれに属する。ヤムシ類増殖の傾向は、7 8月と11 12月の2回に山がみられることは前述の通りであるが、第215図から本種の山をみると、1962年では6 9月、1963年では7月から翌年3月までの2つがみられ、また1962、1963年ともに4月に谷がみられる。

第218図から月別分布の模様を探ることとする。

1月の分布の模様は、溝の北東部に大きく、西部、南部に小さい。

2月の分布の模様は、1961、1963年では溝全域に小さく、溝分溝の北東部に大きく1月とほぼ同じ傾向を示す。しかし1962、1964年ではかなり複雑な分布を示し、両年とも溝の中央部に大きく、東部、西部に小さ
Fig. 217. Maps showing monthly distribution of the number of *Sagitta crassa* (Torioka) No./m², in the Mihara Strait and the Bingo Nada.

3月の分布の模様は、1962、1964年では瀬の北東部に大きく、西部または南東部に小さい。しかし1963年では、瀬の中央部から西寄りに大きく、その他に小さい。

4月から9月までの資料は、1962、1963年の2ヶ年の資料に過ぎないが、4月の分布の模様は、いずれも瀬全体に小さい。

5月の分布の模様は、1962年では瀬の北西部と南東部に大きく、瀬の北東部より南西部にかけて帯状に小さく、瀬は2分される。1963年では瀬中央部から西部に大きく、南東部に小さいが両資料は幾分異なる分布を示す。

6月の分布の模様は、多少の部分的変更はあるものの、概して瀬の中央部から南東部に大きい。

7月の分布の模様は、1962年では複雑で、瀬の南部および北東部に大きく、北西部に小さい。一方1963年には、瀬の北東部および南東部に大きく、中央部から西部に小さい。

8月の分布の模様は、1962年と1963年では異なり、前者では瀬全体に濃密に分布するが、後者ではかなり分布密度が小さい。1963年では、瀬の南東部に大きく、北西部に小さい。

—310—
Fig. 218. (1—5), (1, 2). Maps showing monthly distribution of the number of *Sagitta naikatensis* No/m³, in the Mihara Strait and the Bingo Nada.
Fig. 218. (3, 4).

-312-
Fig. 218. (5).

9月の分布の模様はかなり複雑で、1962年では瀬の北部に大きく、南部に小さいが、1963年では瀬の中西部、南部に大きく、南部に小さい。

10月の分布の模様は、1960年と1963年の資料によると両者とも瀬の東部に大きいが、1960年では、瀬の中央部から南部に、1963年では瀬の南東部にそれぞれ小さい。

11月の分布の模様は、1960年と1963年とは全く異なり、前者では瀬全域に小さく、後に中央南部から南部に小さいが、後者では瀬全域に大きくここに瀬の北部、南部、西部が目立つ。

12月の分布の模様は、1960年、1961年では瀬分布が目立つ。

iii) Intermediate form

中間型は第131図および第215図からもわかるように、S. naikaiensis について多いが、調査期間内では1962年1〜5、6月以外の採捕数は少ない。

第219図は、中間型の月別分布を示す。これによっても上記の月以外には1963年1〜2月が注目されるに過ぎない。

1962年1月の分布の模様は、瀬の中央に濃密分布を示し、瀬の西部、西北部、南東部に小さい。

1963年1月の分布の模様は、瀬の西部に大きく、北部、東部および東南部に小さい。

1962年6月の分布の模様は、5月と同様である。

1963年1月の分布の模様は前年とは異なり、瀬の北東部に大きく、名倉水道、瀬の南部に小さい。

1963年2月の分布の模様は1月と同じく、瀬の北東部に大きく、瀬の中央から西に小さい。

以上 Chaetognatha の分布について述べたが、Chaetognatha の重要性は、時にイカノゴとprey-predator の関係にあること、時に餌を奪い合う関係にあるという意味からである。Chaetognatha の調査結果から推察すると、イカノゴ稚仔のChaetognathaによる捕食は、次の理由から何らかの障害にはならないようである。

1. Chaetognatha の分布は、日間では底層に多く、イカノゴ稚仔の遊泳層と異なる。

2. イカノゴ稚仔は、遊泳力の小さいのは1〜2月であるが、この時期は Chaetognatha の出現量が年間
Fig. 219. (1—4), (1, 2). Maps showing monthly distribution of the number of intermediate form of *Sagitta crassa* No/m³, in the Mihara Strait and the Bingo Nada.
Fig. 219. (3, 4).
を通じて最も小さい。
つぎに第204図によって Chaetognatha の増減を Plankton 沈降量、塩素量と比較すると、Plankton 沈降量とは正の相関、塩素量とは負の相関を示すが、S. naikaiensis が笠岡湾湾内水に多いことと考えあわせると当然と思われる。しかしながら、いずれにしても側生物である動物性 Plankton の奪い合いは免がれ得ないであろう。

第9項 水塊の 流動

催後潮を中心として水温、塩素量、透明度、懸濁質係数、照度、渦度、Plankton などについて季節的環境変化の模様を述べたが、これら相互の関連性を検討すると、透明度-渦度、透明度-懸濁質係数との間に逆相関が認められる。しかしこれはむしろ当然で、渦度が大きくなれば透明度は減少するはずである。第220図は透明度と懸濁質係数；第221図は透明度と渦度との関係を示す。

Fig. 220. Relation between the value of transparency and the suspension factor.

Fig. 221. Relation between the value of transparency and the index of turbidity.

第132表は催後潮における年別、月別平均水温、塩素量、透明度、懸濁質係数、渦度、Plankton 沈降量ならびにヤムシ類採捕数を示す。

— 316 —
Table 13. Monthly changes of the average water temperature, chlorinity, transparency, suspension factor, index of turbidity, settling volume of plankton and number of Chaetognatha by years.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1959</td>
<td>Water temperature (°C)</td>
<td>11.0</td>
<td>9.6</td>
<td>10.7</td>
<td>14.2</td>
<td>17.6</td>
<td>20.6</td>
<td>25.6</td>
<td>27.8</td>
<td>26.7</td>
<td>22.2</td>
<td>19.0</td>
<td>14.6</td>
</tr>
<tr>
<td></td>
<td>Chlorinity (%)</td>
<td>17.92</td>
<td>18.13</td>
<td>18.24</td>
<td>18.36</td>
<td>17.91</td>
<td>17.78</td>
<td>16.92</td>
<td>17.19</td>
<td>17.22</td>
<td>17.17</td>
<td>17.57</td>
<td>18.06</td>
</tr>
<tr>
<td></td>
<td>Transparency (m)</td>
<td>4.14</td>
<td>7.86</td>
<td>6.68</td>
<td>7.50</td>
<td>8.94</td>
<td>9.34</td>
<td>6.93</td>
<td>7.36</td>
<td>5.79</td>
<td>6.93</td>
<td>7.22</td>
<td>3.68</td>
</tr>
<tr>
<td></td>
<td>Suspension factor (a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.43</td>
<td>0.36</td>
<td>0.33</td>
<td>0.31</td>
<td>0.37</td>
<td>0.43</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Index of turbidity (r)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Settling volume of plankton(ml/m³)</td>
<td>19.5</td>
<td>14.6</td>
<td>9.4</td>
<td>37.8</td>
<td>14.2</td>
<td>14.3</td>
<td>106.7</td>
<td>99.4</td>
<td>48.9</td>
<td>18.5</td>
<td>9.0</td>
<td>7.3</td>
</tr>
<tr>
<td></td>
<td>No. of Chaetognatha</td>
<td>52.7</td>
<td>29.4</td>
<td>14.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1960</td>
<td>Water temperature (°C)</td>
<td>10.4</td>
<td>8.5</td>
<td>9.5</td>
<td>12.9</td>
<td>17.2</td>
<td>19.8</td>
<td>24.4</td>
<td>27.0</td>
<td>28.5</td>
<td>25.7</td>
<td>20.2</td>
<td>15.6</td>
</tr>
<tr>
<td></td>
<td>Chlorinity (%)</td>
<td>18.33</td>
<td>18.58</td>
<td>18.45</td>
<td>18.25</td>
<td>17.87</td>
<td>18.03</td>
<td>17.40</td>
<td>17.74</td>
<td>17.70</td>
<td>17.38</td>
<td>17.12</td>
<td>17.42</td>
</tr>
<tr>
<td></td>
<td>Transparency (m)</td>
<td>5.23</td>
<td>8.10</td>
<td>5.81</td>
<td>9.10</td>
<td>8.11</td>
<td>9.46</td>
<td>6.19</td>
<td>7.86</td>
<td>5.53</td>
<td>4.96</td>
<td>8.24</td>
<td>2.96</td>
</tr>
<tr>
<td></td>
<td>Suspension factor (a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.46</td>
<td>0.43</td>
<td>0.42</td>
<td>0.41</td>
<td>0.45</td>
<td>0.46</td>
<td>0.62</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>Index of turbidity (r)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.30</td>
<td>0.51</td>
<td>0.54</td>
<td>0.75</td>
<td>0.90</td>
<td>0.84</td>
<td>0.88</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>Settling volume of plankton(ml/m³)</td>
<td>17.8</td>
<td>12.9</td>
<td>39.4</td>
<td>16.3</td>
<td>22.9</td>
<td>12.3</td>
<td>114.1</td>
<td>12.0</td>
<td>33.0</td>
<td>7.9</td>
<td>7.3</td>
<td>22.5</td>
</tr>
<tr>
<td></td>
<td>No. of Chaetognatha</td>
<td>17.9</td>
<td>16.5</td>
<td>11.3</td>
<td>22.5</td>
<td>27.6</td>
<td>62.0</td>
<td>105.2</td>
<td>222.8</td>
<td>74.8</td>
<td>21.4</td>
<td>24.3</td>
<td>77.8</td>
</tr>
<tr>
<td>------</td>
<td>----------------------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>62</td>
<td>Water temperature (°C)</td>
<td>11.3</td>
<td>9.9</td>
<td>10.3</td>
<td>12.7</td>
<td>17.1</td>
<td>18.8</td>
<td>23.1</td>
<td>27.3</td>
<td>26.9</td>
<td></td>
<td></td>
<td>14.0</td>
</tr>
<tr>
<td></td>
<td>Chlorinity (%)</td>
<td>17.91</td>
<td>18.09</td>
<td>18.32</td>
<td>18.36</td>
<td>17.98</td>
<td>16.43</td>
<td>17.12</td>
<td>17.54</td>
<td>17.46</td>
<td></td>
<td></td>
<td>17.99</td>
</tr>
<tr>
<td></td>
<td>Transparency (m)</td>
<td>4.04</td>
<td>6.70</td>
<td>5.36</td>
<td>8.44</td>
<td>9.07</td>
<td>8.74</td>
<td>8.63</td>
<td>9.60</td>
<td>5.89</td>
<td></td>
<td></td>
<td>3.23</td>
</tr>
<tr>
<td></td>
<td>Suspension factor (σ)</td>
<td>0.62</td>
<td>0.46</td>
<td>0.49</td>
<td>0.41</td>
<td>0.36</td>
<td>0.43</td>
<td>0.42</td>
<td>0.43</td>
<td>0.52</td>
<td></td>
<td></td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>Index of turbidity (τ)</td>
<td>1.17</td>
<td>0.75</td>
<td>0.93</td>
<td>0.57</td>
<td>0.45</td>
<td>0.60</td>
<td>0.59</td>
<td>0.53</td>
<td>0.87</td>
<td></td>
<td></td>
<td>1.43</td>
</tr>
<tr>
<td></td>
<td>Settling volume of plankton (ml/m³)</td>
<td>102.5</td>
<td>53.1</td>
<td>9.5</td>
<td>43.3</td>
<td>12.7</td>
<td>16.6</td>
<td>54.2</td>
<td>26.3</td>
<td>36.2</td>
<td></td>
<td></td>
<td>33.1</td>
</tr>
<tr>
<td></td>
<td>No. of Chaetognatha</td>
<td>74.5</td>
<td>60.4</td>
<td>40.9</td>
<td>11.2</td>
<td>30.8</td>
<td>132.3</td>
<td>70.5</td>
<td>153.7</td>
<td>110.1</td>
<td></td>
<td></td>
<td>109.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Water temperature (°C)</td>
<td>9.5</td>
<td>7.8</td>
<td>8.2</td>
<td>10.3</td>
<td>14.4</td>
<td>18.8</td>
<td>33.7</td>
<td>25.0</td>
<td>24.9</td>
<td>22.0</td>
<td>17.8</td>
<td>14.8</td>
</tr>
<tr>
<td></td>
<td>Chlorinity (%)</td>
<td>18.23</td>
<td>18.44</td>
<td>18.45</td>
<td>18.49</td>
<td>18.71</td>
<td>16.35</td>
<td>17.07</td>
<td>17.63</td>
<td>17.40</td>
<td>17.48</td>
<td>17.63</td>
<td>17.95</td>
</tr>
<tr>
<td></td>
<td>Transparency (m)</td>
<td>4.93</td>
<td>5.96</td>
<td>4.62</td>
<td>5.20</td>
<td>6.14</td>
<td>7.10</td>
<td>8.62</td>
<td>6.41</td>
<td>4.01</td>
<td>6.31</td>
<td>4.66</td>
<td>3.09</td>
</tr>
<tr>
<td></td>
<td>Suspension factor (σ)</td>
<td>0.59</td>
<td>0.51</td>
<td>0.44</td>
<td>0.44</td>
<td>0.34</td>
<td>0.52</td>
<td>0.45</td>
<td>0.50</td>
<td>0.65</td>
<td>0.50</td>
<td>0.55</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td>Index of turbidity (τ)</td>
<td>0.99</td>
<td>0.74</td>
<td>0.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Settling volume of plankton (ml/m³)</td>
<td>26.4</td>
<td>57.8</td>
<td>26.8</td>
<td>24.4</td>
<td>26.4</td>
<td>12.9</td>
<td>49.8</td>
<td>21.9</td>
<td>22.1</td>
<td>12.3</td>
<td>9.8</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>No. of Chaetognatha</td>
<td>35.4</td>
<td>33.2</td>
<td>25.1</td>
<td>5.4</td>
<td>13.8</td>
<td>21.5</td>
<td>49.6</td>
<td>55.0</td>
<td>93.4</td>
<td>58.2</td>
<td>72.5</td>
<td>83.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>Water temperature (°C)</td>
<td>11.4</td>
<td>9.0</td>
<td>9.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorinity (%)</td>
<td>18.18</td>
<td>18.17</td>
<td>18.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transparency (m)</td>
<td>5.01</td>
<td>6.40</td>
<td>5.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suspension factor (σ)</td>
<td>0.45</td>
<td>0.41</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Index of turbidity (τ)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Settling volume of plankton (ml/m³)</td>
<td>46.1</td>
<td>36.7</td>
<td>31.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. of Chaetognatha</td>
<td>67.0</td>
<td>73.2</td>
<td>45.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
また透明度と Plankton 沈澱量ならびに塩素量の変動を、第131表から年別、月別に図示すると第222図のようにである。

Fig. 222. Monthly changes of the transparency, chlorinity and settling volume of plankton.
Solid circles, transparency; soft circles, chlorinity; crosses, plankton.

後に述べるように、塩素量は降水量と逆相関を示し、Plankton 沈澱量と透明度との関係は反曲線で示されるのは花岡（1952）の報告するところである。また塩素量は透明度と相関することも知られている。ところが第222図のように、例年備後灘では12月、1月に透明度が異状に低下するが、塩素量は大きく Plankton 沈澱量は小さい。その原因は前述の通り戦車漕ぎ漁業によるもので、本漁業は11月から備後灘の操業が開始され、2月下旬まで続く。操業状態をみると、漁期の初めでは沈澱した海泥の入網をさけるためえ網距離を短かくし、漁期の進むにつれ海泥は減少するためえ網距離を次第に延長する。

つぎに備後灘水塊の流動を知るために、次のような試みを行なった。すなわち同一水塊では、透明度、塩素量、Plankton 沈澱量が同じ季節変動を示すものと仮定して、これらの各定点間で変動を求ることとした。某年某月を基準として、次の月の測定値が大きいか、小さいかによって十、一の記号を与え、その集計によって定点間の相関度を判断することとした。

第223—225図は第110表に示した観測結果から、各年の3月から翌年2月までの1年間について集計した透明度、塩素量、Plankton 沈澱量の定点間の相関度によってえがいた備後灘水塊流動の推定図である。

備後灘は紀伊水道と豊後水道から流入する東西両流の合流海域であることは、しばしば報告されているが、水塊混合の様相は複雑で、その流動の様相を明確に捉えることは至難と思われる。第223—225図に示した備後灘水塊流動の推定図は、先に示した潮流調査、岡山県水産試験場調査（1964）および澱戸内海潮汐図（水部郡1929）ともよく一致する。すなわち備後灘水塊は豊後水道系と紀伊水道系の2つからなり、合流
Fig. 223. Map showing the pattern of interrelation water mass concerning transparency, chlorinity, and settling volume of plankton, during the period from March, 1959 to February, 1960.

Fig. 224. Map showing the pattern of interrelation water mass concerning transparency, chlorinity, and settling volume of plankton, during the period from March, 1961 to February, 1962.
Fig. 225. Map showing the pattern of interrelation water mass concerning transparency, chlorinity, and settling volume of plankton, during the period from March, 1963 to February, 1964.

弘田（1961）は、伝ひ津湾域における動水性 Plankton 調査から、その水理学的特性の一覧考察を行ない、三原水道（北西海域）、東北海域、瀬戸内海域の3海域に区分されることを示した。このうち三原水道（北西海域）は最も内湾的で、瀬戸内海域が最も外洋的であるが、外洋水の影響、外洋性暖流類と水深の出現からみて瀬戸内海のどの海域よりも少ない。また西から流入する潮汐流によって運ばれた水は最も内湾的で、直接影響を受ける海域は、三原水道（北西海域）と瀬戸内海と瀬戸内海との間で、東から運ばれた水よりも Plankton 発生に不適溶である。さらに北東海域は非常に内湾的であるが、Plankton 発生に適した笠岡湾内水に影響さ

した海域と同様な水理学的条件をもった海域から流れる水によって影響されるという。

いずれにしても、伝ひ津は、東西両流の合流海域で、これに沿岸水が複雑に混合した海域である。第10項 底 質

底質はイカナゴの生活と密接な関連があることはすでに述べた。1961年8月7日～10日各点のEkman Birge grab samplerによる底質調査を行ない、伝ひ津全海域の底質を明らかにした。

調査方法は各定点ごとに2回採泥して、採泥量と水深を測定、さらに採泥資料について泥料組成と約熱減量をしらべた。またこれと同時に古川（1965）に従い、ペネトロ・メーターの没入深度により泥質硬度を測定した。

1. 採 泥 量

各定点別に採泥量を示すと第226図のようである。

第226図によると、採泥量は瀬戸北東部に大きく、走島、大島、三崎を経て東の沿岸部に小さい。なお採

泥時の水深は第227図に示す通りである。
Fig. 226. Distribution of the amount of mud in volume (liter) collected by the Ekman Birge grab sampler.

Fig. 227. Map showing the depth of water in meters at the time of investigation done.

— 322 —
2. 泥料組成

第133表は泥料組成を示す。また第228図は、況の粒子が100 mesh よりも大きいものと小さいものとに分けて100 mesh 以上のもが全体に占める割合を百分率で示したものである。

Table 133. Compositions of bottom mud collected during August 7—8, 1961.

<table>
<thead>
<tr>
<th>Station</th>
<th>Depth (m)</th>
<th>Amount of mud collected (l)</th>
<th>Penetration depth (cm)</th>
<th>Ignition loss (%)</th>
<th>Composition of bottom mud (mesh)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>15.0</td>
<td>1.9</td>
<td>52</td>
<td>8.33</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.42</td>
</tr>
<tr>
<td>50</td>
<td>14.5</td>
<td>2.7</td>
<td>68</td>
<td>11.00</td>
<td>0.32</td>
</tr>
<tr>
<td>52</td>
<td>10.0</td>
<td>2.6</td>
<td>74</td>
<td>10.53</td>
<td>0.07</td>
</tr>
<tr>
<td>54</td>
<td>17.5</td>
<td>2.2</td>
<td>65</td>
<td>11.35</td>
<td>0.09</td>
</tr>
<tr>
<td>56</td>
<td>15.5</td>
<td>2.8</td>
<td>76</td>
<td>13.97</td>
<td>0.08</td>
</tr>
<tr>
<td>58</td>
<td>15.9</td>
<td>2.8</td>
<td>78</td>
<td>10.54</td>
<td>0.08</td>
</tr>
<tr>
<td>60</td>
<td>16.0</td>
<td>2.2</td>
<td>57</td>
<td>10.41</td>
<td>0.08</td>
</tr>
<tr>
<td>62</td>
<td>18.0</td>
<td>2.4</td>
<td>66</td>
<td>9.98</td>
<td>0.08</td>
</tr>
<tr>
<td>64</td>
<td>19.0</td>
<td>2.0</td>
<td>67</td>
<td>11.78</td>
<td>0.22</td>
</tr>
<tr>
<td>66</td>
<td>20.0</td>
<td>2.2</td>
<td>73</td>
<td>11.90</td>
<td>0.22</td>
</tr>
<tr>
<td>68</td>
<td>21.0</td>
<td>2.2</td>
<td>73</td>
<td>10.59</td>
<td>0.17</td>
</tr>
<tr>
<td>69</td>
<td>22.0</td>
<td>2.2</td>
<td>73</td>
<td>11.22</td>
<td>0.09</td>
</tr>
<tr>
<td>71</td>
<td>23.0</td>
<td>2.0</td>
<td>73</td>
<td>10.59</td>
<td>0.17</td>
</tr>
<tr>
<td>73</td>
<td>24.0</td>
<td>2.4</td>
<td>73</td>
<td>11.20</td>
<td>0.24</td>
</tr>
<tr>
<td>75</td>
<td>24.0</td>
<td>1.9</td>
<td>43</td>
<td>5.44</td>
<td>1.03</td>
</tr>
<tr>
<td>77</td>
<td>24.0</td>
<td>1.9</td>
<td>53</td>
<td>8.43</td>
<td>0.05</td>
</tr>
<tr>
<td>79</td>
<td>24.0</td>
<td>1.2</td>
<td>46</td>
<td>6.58</td>
<td>0.09</td>
</tr>
<tr>
<td>81</td>
<td>24.0</td>
<td>1.6</td>
<td>63</td>
<td>9.57</td>
<td>0.24</td>
</tr>
<tr>
<td>83</td>
<td>24.0</td>
<td>1.9</td>
<td>82</td>
<td>12.00</td>
<td>0.19</td>
</tr>
<tr>
<td>85</td>
<td>24.0</td>
<td>1.2</td>
<td>85</td>
<td>13.45</td>
<td>0.27</td>
</tr>
<tr>
<td>87</td>
<td>24.0</td>
<td>1.8</td>
<td>83</td>
<td>12.72</td>
<td>0.18</td>
</tr>
<tr>
<td>89</td>
<td>24.0</td>
<td>2.0</td>
<td>67</td>
<td>11.46</td>
<td>0.16</td>
</tr>
<tr>
<td>91</td>
<td>24.0</td>
<td>2.0</td>
<td>67</td>
<td>11.46</td>
<td>0.16</td>
</tr>
<tr>
<td>93</td>
<td>24.0</td>
<td>2.0</td>
<td>59</td>
<td>9.98</td>
<td>0.23</td>
</tr>
<tr>
<td>95</td>
<td>25.0</td>
<td>2.0</td>
<td>63</td>
<td>9.25</td>
<td>2.72</td>
</tr>
<tr>
<td>97</td>
<td>24.0</td>
<td>1.9</td>
<td>63</td>
<td>9.25</td>
<td>2.72</td>
</tr>
<tr>
<td>99</td>
<td>24.0</td>
<td>1.2</td>
<td>63</td>
<td>9.25</td>
<td>2.72</td>
</tr>
<tr>
<td>101</td>
<td>24.0</td>
<td>2.4</td>
<td>63</td>
<td>9.25</td>
<td>2.72</td>
</tr>
<tr>
<td>103</td>
<td>22.0</td>
<td>2.3</td>
<td>71</td>
<td>10.90</td>
<td>0.99</td>
</tr>
<tr>
<td>105</td>
<td>25.0</td>
<td>2.2</td>
<td>83</td>
<td>11.67</td>
<td>0.15</td>
</tr>
<tr>
<td>107</td>
<td>25.0</td>
<td>2.4</td>
<td>84</td>
<td>11.50</td>
<td>0.87</td>
</tr>
<tr>
<td>109</td>
<td>24.0</td>
<td>1.8</td>
<td>67</td>
<td>10.42</td>
<td>0.34</td>
</tr>
<tr>
<td>111</td>
<td>24.0</td>
<td>1.8</td>
<td>67</td>
<td>10.42</td>
<td>0.34</td>
</tr>
<tr>
<td>113</td>
<td>26.0</td>
<td>1.8</td>
<td>58</td>
<td>8.04</td>
<td>0.13</td>
</tr>
<tr>
<td>115</td>
<td>27.0</td>
<td>2.2</td>
<td>69</td>
<td>10.25</td>
<td>0.16</td>
</tr>
<tr>
<td>117</td>
<td>27.5</td>
<td>2.3</td>
<td>70</td>
<td>12.35</td>
<td>0.20</td>
</tr>
<tr>
<td>119</td>
<td>27.5</td>
<td>2.3</td>
<td>70</td>
<td>12.35</td>
<td>0.20</td>
</tr>
<tr>
<td>121</td>
<td>27.5</td>
<td>2.3</td>
<td>70</td>
<td>12.35</td>
<td>0.20</td>
</tr>
<tr>
<td>123</td>
<td>24.0</td>
<td>2.4</td>
<td>73</td>
<td>11.37</td>
<td>10.26</td>
</tr>
<tr>
<td>125</td>
<td>24.0</td>
<td>2.4</td>
<td>73</td>
<td>11.37</td>
<td>10.26</td>
</tr>
<tr>
<td>127</td>
<td>24.0</td>
<td>2.4</td>
<td>73</td>
<td>11.37</td>
<td>10.26</td>
</tr>
<tr>
<td>129</td>
<td>24.0</td>
<td>2.4</td>
<td>73</td>
<td>11.37</td>
<td>10.26</td>
</tr>
<tr>
<td>131</td>
<td>24.0</td>
<td>2.4</td>
<td>73</td>
<td>11.37</td>
<td>10.26</td>
</tr>
<tr>
<td>133</td>
<td>24.0</td>
<td>2.4</td>
<td>73</td>
<td>11.37</td>
<td>10.26</td>
</tr>
<tr>
<td>135</td>
<td>24.0</td>
<td>2.4</td>
<td>73</td>
<td>11.37</td>
<td>10.26</td>
</tr>
<tr>
<td>137</td>
<td>24.0</td>
<td>2.4</td>
<td>73</td>
<td>11.37</td>
<td>10.26</td>
</tr>
<tr>
<td>139</td>
<td>24.0</td>
<td>2.4</td>
<td>73</td>
<td>11.37</td>
<td>10.26</td>
</tr>
<tr>
<td>141</td>
<td>24.0</td>
<td>2.4</td>
<td>58</td>
<td>8.04</td>
<td>0.13</td>
</tr>
<tr>
<td>143</td>
<td>26.0</td>
<td>2.0</td>
<td>62</td>
<td>10.00</td>
<td>0.17</td>
</tr>
<tr>
<td>145</td>
<td>26.0</td>
<td>2.0</td>
<td>62</td>
<td>10.00</td>
<td>0.17</td>
</tr>
<tr>
<td>147</td>
<td>26.0</td>
<td>2.0</td>
<td>62</td>
<td>10.00</td>
<td>0.17</td>
</tr>
<tr>
<td>149</td>
<td>26.0</td>
<td>2.0</td>
<td>62</td>
<td>10.00</td>
<td>0.17</td>
</tr>
<tr>
<td>151</td>
<td>26.0</td>
<td>2.0</td>
<td>62</td>
<td>10.00</td>
<td>0.17</td>
</tr>
<tr>
<td>153</td>
<td>26.0</td>
<td>2.0</td>
<td>62</td>
<td>10.00</td>
<td>0.17</td>
</tr>
<tr>
<td>155</td>
<td>26.0</td>
<td>2.0</td>
<td>62</td>
<td>10.00</td>
<td>0.17</td>
</tr>
<tr>
<td>157</td>
<td>26.0</td>
<td>2.0</td>
<td>62</td>
<td>10.00</td>
<td>0.17</td>
</tr>
<tr>
<td>159</td>
<td>26.0</td>
<td>2.0</td>
<td>62</td>
<td>10.00</td>
<td>0.17</td>
</tr>
<tr>
<td>161</td>
<td>26.0</td>
<td>2.0</td>
<td>62</td>
<td>10.00</td>
<td>0.17</td>
</tr>
<tr>
<td>163</td>
<td>26.0</td>
<td>2.0</td>
<td>62</td>
<td>10.00</td>
<td>0.17</td>
</tr>
<tr>
<td>165</td>
<td>26.0</td>
<td>2.0</td>
<td>62</td>
<td>10.00</td>
<td>0.17</td>
</tr>
</tbody>
</table>
Fig. 228. Map showing the percentage of mud particles larger than 100 mesh.

Fig. 229. Map showing the results of observation of bottom mud by "penetrometer".
これによってEkman Birge grab samplerで採泥できなかった定点では、100 mesh以上の泥が少なく岩または、れきであったが、藻のほとんど全海域では、90％以上が100 mesh以上の細泥であるといえよう。

3. ベネトロメーター測定値

調査に使用したベネトロメーターは、内水研型で生産力部の試作品を内海区水底研究所長川厚博士から借用したものである。第229図はベネトロメーターの測定結果を示す。

第229図によると、測定値は藻の中央部に大きく、藻の西部と東部に小さいが特に走島、六島、三崎付近海域に小さい。ベネトロメーターの値の大きい定点は、藻質が軟泥のではなく、採泥量と密接な関係がありそうに思われるが両者の関係は明確でない。ただし走島、六島、三崎付近の岩礁部では両者は共に小さい。

4. 灼熱減量

第230図は灼熱減量を示す。

Fig. 230. Map showing the ignition loss of bottom mud in per cent.

灼熱減量は、走島、六島、三崎付近に小さく、藻の中央部を南北に帯状に貫く海域に大きい。これらの分布の様相は、第239図に示したベネトロメーター測定値と酷似する。

これを要するに、藻の中央部ほど海底は潮流の影響が少なく浮泥その他有機物の沈積物が多いといえよう。

第11項 イカナゴ産卵環境

これまで黒潮のイカナゴ稚仔と海況について述べ、水温と塩素量が稚仔発生量と関係することを述べた。第231図は、イカナゴ稚仔発生環境を水温と塩素量との関係で示したものである。

第231図において、点線で囲まれた部分は黒潮の1、2月の海況を示し、破線で囲まれた部分は、イカナゴ稚仔が採取された環境を示し、実線はイカナゴ稚仔が5回以上出現し、その尾数が海水1m²当たり0.5尾以上の場合は示す。これによると、黒潮のイカナゴ稚仔について、出現数の多い海域を水温と塩素量との関係で示したが、水温の高低は塩素量の大小と逆の関係を示す。しかしここに示された環境範囲は、
Fig. 231. The water temperature-chlorinity diagram suggesting the occurrence of sand-lance larvae. In the ranges encircled by solid line, many specimens were discovered.

St. 2, 4, 10, 15, 16, 18, 23 の産卵海域環境と同じことから考えると、イカナゴの産卵環境をこれによって規定することはできない。千田（1964）は、イカナゴ稚仔が多量に出現する水温範囲を 6〜12℃、塩素量範囲を 18.2〜19.0% とし、水温 9℃ 前後で塩素量の幅が最も広いというが、筆者らの場合では水温範囲は 7.0〜13.0℃、塩素量範囲は 17.9〜18.8% で、水温 11〜12℃ 前後に塩素量の幅が最も広い。これらはいずれも産卵場によって環境が相違することを示すもので、塩素量の幅の広さだけが、至適環境を標示するものとは考えない。

5 節 気象

第 1 項 風力、風向

運輸省松永測候所資料により、1959年 1 月から1964年 3 月までの月平均風力を示すと、第 232 図のようなになる。浜田（1965）は、当才魚の密度量と産卵盛期付近の冬季偏西風との関に、r = 0.74 の関係があると述べ当才イカナゴの漁獲が、冬季偏西風と密接な関係があるという。

Fig. 232. Seasonal changes of the average velocity of wind.

布は、1963年では非常に広範囲にわたり、1964年ではこれと全く対象的な集団に狭い分布を示した。先にも述べた通り、1963年では異常季節の襲来で 1 月の風力は特に大きいが、これに反して暖冬年であった1964年では 1 月の風力はきわめて小さい。すなわち、イカナゴ稚魚の分布は潮汐波と同時に風力によることが推定

— 326 —
される。

第134表は、1959年1月から1964年3月までの風向頻度を示す。

第134表によると、風向は1月では西の風；2月では南西の風；3月では南東の風；4月、5月では東北東の風；6月では東北東の風；7月では西の風；8月では南西の風；9月、10月では東北東の風；11月、12月では北西の風が卓越する。このうち1月の風向についてみると、1959年から1963年までは西寄りの風が卓越するが、1964年では東北東の風が卓越し、風向は1959~1963年までとは逆の方向を示す。2月の風向についてみると、1960、1962、1963年では南西の風が卓越するが、1959年では東北東、1961年では西、1964年では南北東または北西の風が卓越する。専向面のイカナノ産卵場は、海西部の三原島西部、四邦島北西海域であることは前述の通りであるが、イカナノ稚仔の抵抗は西寄りの風向が好ましい。したがって、例年1月には西、2月には南西の風が卓越することは、イカナノの稚仔分布に大きな影響を与えるはずで、1964年の1月の風向が例外と異なり東北東が卓越したことは、風力の弱かったことに加えて、さらにイカナノ稚仔の分散を悪くさせた要因の1つと考えられる。

Table 134. Frequency distributions of wind direction during the period
from 1959 to 1964.

<table>
<thead>
<tr>
<th>Month</th>
<th>Year</th>
<th>NN</th>
<th>EN</th>
<th>NE</th>
<th>E</th>
<th>ESE</th>
<th>S</th>
<th>SSE</th>
<th>SS</th>
<th>SSW</th>
<th>SW</th>
<th>W</th>
<th>NW</th>
<th>NW</th>
<th>NNW</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>Jan.</td>
<td>1959</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>--</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
<td>5</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>10</td>
<td>5</td>
<td>12</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>3</td>
<td>18</td>
<td>31</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Feb.</td>
<td>59</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>--</td>
<td>1</td>
<td>--</td>
<td>2</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>--</td>
<td>2</td>
<td>--</td>
<td>3</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>--</td>
<td>7</td>
<td>--</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>--</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>--</td>
<td>1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>--</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>--</td>
<td>--</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>9</td>
<td>10</td>
<td>18</td>
<td>6</td>
<td>2</td>
<td>11</td>
<td>19</td>
<td>6</td>
<td>1</td>
<td>27</td>
<td>6</td>
<td>16</td>
<td>12</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>Mar.</td>
<td>59</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>--</td>
<td>1</td>
<td>--</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>--</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td>--</td>
<td>2</td>
<td>--</td>
<td>2</td>
<td>1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>--</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>--</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>--</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4</td>
<td>18</td>
<td>24</td>
<td>7</td>
<td>1</td>
<td>7</td>
<td>29</td>
<td>19</td>
<td>5</td>
<td>24</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>Apr.</td>
<td>59</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>--</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>--</td>
<td>1</td>
<td>2</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>--</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>--</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td></td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>--</td>
<td>2</td>
<td>--</td>
<td>3</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>2</td>
<td>23</td>
<td>30</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>16</td>
<td>16</td>
<td>10</td>
<td>16</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>3</td>
</tr>
</tbody>
</table>

--- 327 ---
<table>
<thead>
<tr>
<th>Month</th>
<th>Dir.</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NNE</td>
<td>NE</td>
<td>ENE</td>
<td>E</td>
<td>ESE</td>
<td>S</td>
<td>SSE</td>
<td>SSW</td>
<td>S</td>
<td>W</td>
<td>WSW</td>
<td>W</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>May</td>
<td></td>
</tr>
<tr>
<td>'59</td>
<td></td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>'60</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>'61</td>
<td></td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>'62</td>
<td></td>
<td>1</td>
<td>3</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'63</td>
<td></td>
<td>9</td>
<td>13</td>
<td>22</td>
<td>8</td>
<td>7</td>
<td>16</td>
<td>12</td>
<td>14</td>
<td>8</td>
<td>16</td>
<td>9</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4</td>
<td>22</td>
<td>21</td>
<td>8</td>
<td>4</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>14</td>
<td>19</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>June</td>
<td></td>
</tr>
<tr>
<td>'59</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>'60</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td></td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>'61</td>
<td></td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td>2</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>'62</td>
<td></td>
<td>2</td>
<td>6</td>
<td>5</td>
<td></td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'63</td>
<td></td>
<td>2</td>
<td>7</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>7</td>
<td></td>
<td>4</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4</td>
<td>7</td>
<td>18</td>
<td>3</td>
<td>11</td>
<td>20</td>
<td>14</td>
<td>19</td>
<td>17</td>
<td>29</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>July</td>
<td></td>
</tr>
<tr>
<td>'59</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>'60</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>'61</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>'62</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>'63</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>6</td>
<td>3</td>
<td></td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4</td>
<td>8</td>
<td>20</td>
<td>19</td>
<td>9</td>
<td>19</td>
<td>23</td>
<td>8</td>
<td>8</td>
<td>22</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aug.</td>
<td></td>
</tr>
<tr>
<td>'59</td>
<td></td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td></td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>'60</td>
<td></td>
<td>2</td>
<td>10</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td></td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>'61</td>
<td></td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>'62</td>
<td></td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>'63</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4</td>
<td>15</td>
<td>28</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>13</td>
<td>10</td>
<td>6</td>
<td>20</td>
<td>8</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sep.</td>
<td></td>
</tr>
<tr>
<td>'59</td>
<td></td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>'60</td>
<td></td>
<td>2</td>
<td>3</td>
<td>10</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>'61</td>
<td></td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>'62</td>
<td></td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>'63</td>
<td></td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>13</td>
<td>25</td>
<td>33</td>
<td>16</td>
<td>10</td>
<td>9</td>
<td>11</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Oct.</td>
<td></td>
</tr>
<tr>
<td>'59</td>
<td></td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>5</td>
<td>1</td>
<td></td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>'60</td>
<td></td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>'61</td>
<td></td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td>4</td>
<td>2</td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>'62</td>
<td></td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td>4</td>
<td>2</td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>'63</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>11</td>
<td>17</td>
<td>19</td>
<td>9</td>
<td>1</td>
<td>8</td>
<td>15</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>14</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Nov.</td>
<td></td>
</tr>
<tr>
<td>'59</td>
<td></td>
<td>3</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>'60</td>
<td></td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>'61</td>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>'62</td>
<td></td>
<td>4</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>'63</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4</td>
<td>9</td>
<td>14</td>
<td>6</td>
<td></td>
<td>6</td>
<td>10</td>
<td>2</td>
<td></td>
<td>22</td>
<td>15</td>
<td>17</td>
<td>13</td>
</tr>
</tbody>
</table>

Table 134. Continued.
第2項 雨量

塩素量の大小は弘田（1961）も指摘するように降雨量の大小に母体するが、水文気象（1959〜1964）から1959年1月より1963年12月までの降雨量について、偏微視に影響を与えると思われる筑島、北木島、甲山、府中、新市、神辺、福山、瀬戸、御調、松永、因島、三原、河内の13観測所資料から月別の平均値を求めると、第135表のようになる。

Unit: mm.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1959</td>
<td></td>
<td>62.6</td>
<td>104.4</td>
<td>87.0</td>
<td>106.7</td>
<td>143.7</td>
<td>76.6</td>
<td>229.2</td>
<td>140.0</td>
<td>106.9</td>
<td>96.8</td>
<td>58.0</td>
<td>75.3</td>
<td>105.9</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>31.0</td>
<td>7.2</td>
<td>78.6</td>
<td>86.3</td>
<td>112.5</td>
<td>148.4</td>
<td>235.0</td>
<td>121.5</td>
<td>151.2</td>
<td>81.7</td>
<td>59.6</td>
<td>11.2</td>
<td>12.2</td>
</tr>
<tr>
<td>61</td>
<td></td>
<td>42.8</td>
<td>32.4</td>
<td>92.7</td>
<td>145.3</td>
<td>109.1</td>
<td>120.5</td>
<td>90.2</td>
<td>63.9</td>
<td>179.4</td>
<td>149.6</td>
<td>70.1</td>
<td>17.8</td>
<td>92.8</td>
</tr>
<tr>
<td>62</td>
<td></td>
<td>21.2</td>
<td>20.8</td>
<td>29.0</td>
<td>139.2</td>
<td>117.7</td>
<td>277.9</td>
<td>249.3</td>
<td>84.2</td>
<td>32.8</td>
<td>123.2</td>
<td>74.2</td>
<td>54.6</td>
<td>102.7</td>
</tr>
<tr>
<td>63</td>
<td></td>
<td>19.5</td>
<td>27.2</td>
<td>59.3</td>
<td>142.8</td>
<td>273.7</td>
<td>258.1</td>
<td>89.5</td>
<td>196.4</td>
<td>156.5</td>
<td>100.4</td>
<td>46.0</td>
<td>21.2</td>
<td>116.6</td>
</tr>
<tr>
<td>64</td>
<td></td>
<td>83.6</td>
<td>60.5</td>
<td>60.7</td>
<td>-</td>
</tr>
</tbody>
</table>

第135表において、年の月平均降雨量の2倍以上降雨量のあった月を（×）、半分以下の降雨量のあった月を（＋）とし、それ以外の月を（-）として集計すると第136表となる。

Table 136. Monthly summarization of rainfall, shown by the marks defined below (1959—1963).
Remarks: + ……Amount of rainfall more than twice of the average.
- ……Amount of rainfall less than a half of the average.
- - - ……Amount of rainfall excluding the above.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1959</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>63</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
のためと思われる。つぎに寒帯年は風力による稚魚の拡散助長：産卵、孵化の長期化にともなう魚期の延長をみのがせない。0才親魚の年令組成は年年では約80％を占めるものとみられるが、1才親魚の割合が増大した年は、その年令の漁獲量の増加が期待される。すなわち、このような年は親魚の肥満度が大きく、0才魚1尾当たりの産卵数増加にくわえて、1才親魚の産卵量も0才魚の産卵量を大きく上回ること、および、イカナゴ稚魚が親魚の捕食による被害を受け難しいことによる。

筆者らは、漁況予測について特にこれらの点を重視して、イカナゴ稚魚の海洋分布調査を実施している。本章に述べた海況および気象に関する各要因は、もちろん、イカナゴの環境因子として重要であるが、海洋の環境は比較的安定していること、魚群行動を直接観察できないこと、生態の長期的規制など各々の障害によって、イカナゴ漁に結び直接的な関係を見出すことはきわめて困難である。

結 語

第1章において、農林水産統計報告から全国のイカナゴ漁獲量、漁期、漁業種類、単位努力当たり漁獲量などについて述べ、また広島県農林水産統計報告から敗戦時漁業の実態に触れ、イカナゴ漁獲量と潮流、孵化期水温、孵化期比重との関係を検討した。

1. 全国のイカナゴ漁獲量は、1953年から1963年までの11年間についてみると、かなり大きな変動を示し、1954年の4,875トンを最低とし、1961年の1,086トンを最高とする。イカナゴ漁獲量の漁区別順位は、瀬戸内海が最も大きく、太平洋北区、北海道西区、北海道東北区となる。また全漁獲量に対するイカナゴ漁獲量の割合は、全国では約2％に当たるが、北海道西区、瀬戸内海区では約8～10％に当たる。なおこの割合は、北海道西区では5～6月に40～50％、瀬戸内海区では3～4月に約50％に達する。イカナゴ漁期は漁獲期に従い進むが、ほぼ3月中旬から6月下旬までとみなされるよう。

2. 全国漁獲統計報告から推定されるイカナゴ魚群は、北海道区に5群、太平洋北区に2群、太平洋中区、瀬戸内海区および東支那海区にそれぞれ1群である。

3. イカナゴ漁業種類は海区ごとに趣を異にする。全国的には「その他の敷網」「その他の小型定置」に属するものが主漁業である。これを海区別にみると、北海道区では「その他の小型定置」太平洋北区では「その他の漁業」太平洋中区では「パッチ網」瀬戸内海区では「その他の敷網」東支那海区では「船びき網」がそれぞれ主漁業である。これら各海区の主漁業によって漁獲される漁獲物にイカナゴが占める割合は、北海道区「その他の小型定置」31～62％、太平洋北区「その他の漁業」60～94％、太平洋中区「パッチ網」6～27％、瀬戸内海区「その他の敷網」65～87％、東支那海区「船びき網」13～36％である。

4. 近年におけるイカナゴ漁業の航海数、漁獲量、単位努力当たり漁獲量の関連をその海区の主漁業にとって重要である。
ついて検討した。北海道区では「その他の小型位置魚群」の単位努力当たり漁獲量と、標準化海数数とは密接な逆相関を示す。太平洋南区では「その他の漁獲」についてみると、単位努力当たり漁獲量と標準化海数数は逆相関を示し、同様に太平洋中区では「ベッチ網」について検討すると同傾向を示す。さらに瀬戸内海区では「その他の漁獲」についてみると、単位努力当たり漁獲量と標準化海数数とは、他区と同様に相関を異にする。これはイカノグ消費面での質的変化の傾向を反映するもので漁期、魚体の大きさの変化に基盤するものと思われる。

5. 広島県の主要なイカノグ漁業は袋帯剣漁業である。漁期は3～4月で、イカノグ稚魚を袋帯剣する傾向が強く、4月中旬以降の中型魚の漁獲は次第に減少する。すなわち単位努力当たりの漁獲量は、5月が最も大きいにもかかわらず4月中旬以後は地震漁業に転換する。さらに広島県の袋帯剣魚業についてみると次のことがわかる。

(1) 袋帯剣漁業の漁獲量は潮汐流との関係が深く、期または望の前後に大きく、下弦または上弦の前後

(2) 単位努力当たり漁獲量と標準海数数との関係は逆相関を示す。

(3) イカノグ漁獲量と環境との関係を調査すると、イカノグ漁獲量は産卵期の水温、塩素量に深い関係がみられる。

第2章では、瀬戸内海産イカノグについて生態学的調査研究結果をのべる。
1. イカノグの成長度は、の質と量によって漁場別にも年別にも変化し、概して豊漁年に魚体は小型である。

2. イカノグの背椎部数変異の幅は56～67で、モードは62または63を示し、淡路島周辺部に小さい。したがって瀬戸内海東部のイカノグは大きく2群に区分されるよう、これら2群は、それぞれさらに数群に分けられる。また背椎骨数と産卵期水温の間には逆相関関係がある。

3. 頭長と体長の割合は、年令の増加にしたがい小さくなる。

4. 性比は1とみなされる。

5. 鰓紋調査の結果から次のことが判明した。

(1) 魚体の各部位から採集した鱗の鱗紋をみると、臀鱗の中央直上、側線付近のものが鱗紋数多く最も大型で計測に好都合である。

(2) 魚の年輪は8月ごろから形成されはじめ、翌年3月上旬ごろまでにほぼ100％近く輪形成がみられるようになる。

(3) 魚長（×50mm）は体長（cm）と次の関係を示す。

\[S = 1.478L - 1.523 \]

6. イカノグの年令組成は漁場、漁期、漁獲種類によって異なるが、経年的にも異なることは普通である。瀬戸内海産イカノグの寿命は5年で、年令での年令組成は、0才魚80％以上、1才魚20％以下、2才魚5％以下とみなされる。豊漁年では0才魚の割合が大きいのは当然であるが、豊漁年時の魚年令組成は、1年魚が20％以上を占めるようである。

7. 生殖腺数（生殖腺重量 体重大）は、1月2月8月に達し、産卵の終わる1月上旬では急激に減少し5％以下となる。

8. 産卵期と水温との関係を室温実験によって探った。熟卵の直徑は0.66mm以上であるが、水温15℃以上では純卵を得られなかったが、平均水温11.7℃の室温で熟卵したブランド印は、自然環境のものと同様、熟卵に達した。

9. 産卵数は年々異なり、産卵魚の出現状況から判断すると、産卵年は年によって2回行なうようである。また卵期、卵果の左右重量比、右側が大きく、卵果内の卵数、卵径とも右側が大きさ。

10. 人工繁殖によるイカノグ卵の孵化率と水温との関係を比重23.17～24.30（℃）の海水でしらべた。孵化所要日数は、(A)平均水温6.19℃で33日、(B)平均水温8.30℃で25日、(C)平均水温10.48℃で19日。
均水温12.85℃で14日、(b)平均水温15.74℃で13日であった。なお観測値は、(b)、(c)、(d)、(a)の順に大きくなり、観測直後のイカナゴ稚魚全長は8.81mmであった。

11. イカナゴ稚魚の餌料はCopepodaのNaupliusで、魚体の成長に伴い大型のCopepodaさらにはヤムシ類、稚魚などを捕食するようになる。また餌組成は、イカナゴの生息場所により異なり、成長の早いイカナゴの餌組成には、ヤムシ類が多く含まれる。ヤムシ類の餌はCopepodaであり、イカナゴとは互いに餌を奪い合う関係にありイカナゴ稚魚はま铝合金で大型ヤムシ類に捕食される。

12. 室内実験による飼育生活移行後のイカナゴ栄養値数と摂餌量をしらべた。それによると、イカナゴの後期稚魚は、朝、昼の2回摂餌するようであり、1日の摂餌量は、平均体長7.2～7.4cmの魚体でCopepoda主としてParacalanus約20,000個（433.3mg）を必要最少限度とする。

13. 剪消時間は12時間とみられる。

14. 脂肪含有量は時期により異なる。0才魚は3月下旬では3%であるが、4月下旬では5%、5月下旬では9%と直線的な増加を示し、1才魚は2月下旬では約2%であるが、3月下旬では7%、4月下旬では8%と急増する。

15. 4月下旬ごろまでのイカナゴ稚魚は浮遊生活を行なう袋状飼によって漁獲されるが、5月上旬ごろからイカナゴは砂中に潜入するようになる。

16. 底質選択性は強く、粒子の大きさ8～32mesh、貝殻の混入率30%以上の白色砂底質を好む。

17. 砂中に潜入する早さは、魚の活力にもよるが、90分間で供試魚の約76～88%が砂中に潜入する。

18. 体色の変化は速やかに行なわれ、青色からなめ色に変化するのに約2分、なめ色から青色に変色するのに約20秒を要する。

19. イカナゴは水深34℃以上に達すると、母飼する。筆者らは1954年8月4日、10日の2日で83尾のイカナゴを海砂と共に採集した。母飼魚の肥満度は2.94～5.14、胃は空胃であるが、体腔は脂肪様物質で充満している。

20. イカナゴの寄生虫は線虫類であって、イカナゴ1尾当たりの最大寄生数は93匹であった。また寄生数はイカナゴの生息場所によって差が認められる。

21. 日間におけるイカナゴ稚魚の遊泳層は6～10mで、North SeaのA. marinusの垂直分布と一致する。また夜間では満潮時前に分散するようである。

22. イカナゴの体長5cm以上ものについて塩分抵抗力を調査した結果、塩素量4.69～24.21%に5日間以上生存した。

23. イカナゴの酸素消費量を体長6.52～8.60cmの魚体について調査した結果、水温14.5～19.0℃、Cl15.42～19.95%の条件のもとで平圧1時間0.6mlであった。また塩素酸素量の致死限界は2ml/lを示した。

24. 潮流観察に含まれる日数は、イカナゴ体長6.59～7.30cmでは水温13.4～24.1℃、Cl14.54～18.37%の条件のもとで4月29日から7月9日まで約40日間生存在した。

25. イカナゴは集魚具によって集魚する。

第3章では産卵場およびその周辺海域の魚場について、イカナゴ稚魚の生態および海況気象に関連して検討した。

1. イカナゴ稚魚の分散について次の事項を調査した。

(1) イカナゴの産卵場は後述周辺で、三原水道、四阪島北西海域、仏瀬瀬戸の3箇所である。

(2) イカナゴ稚魚の年ごとの分布を明らかにできたが、これはおもに潮位と気象条件によって変化する。

(3) 1960年から1985年までの各年の出石における1月、2月のイカナゴ採集量と体長組成からみると、イカナゴの産卵期2年によってかなり異なる。1月の定点観測結果をもとづくイカナゴ稚魚量の年別比較は、特に大または小のばらつき以外には困難であるが、魚場および養殖の変化は、イカナゴ漁期の1月前の時点において、かなり確実な予測が可能である。

(4) イカナゴ稚魚の採集方法について検討し、網目2×13を取り付けた北原式Plankton netの水深5
2. 産卵期の遅れ、長短は、産卵の水温と密接な関係がある。したがって、イカナゴ稚仔が最大値を示す時期は年によって異なり、稚仔採捕数によって稚仔量を推定することは、多くの困難が予想される。
3. 瀬戸内海の潮流調査のため100本の海底流を25本ずつ、紀伊水道、明石海峡、豊後水道、下関海峡に投入し、11本が回収された。
4. 偏南海況調査はイカナゴ稚仔調査と同時に着手し、毎月1回偏南海に設定した地点の観測を実施した。その結果を要約すると次のようである。

(1) 水温は概して瀬戸の西部に高く、東部に低い。
(2) 塩素量は水温とほぼ似た傾向を示すが、瀬戸の東部は潮間帯の影響が強く低かかである。
(3) 透明度は5、6月に大きく12月に小さいが、12月を中心とする透明度の低下は、主として小型底びき網漁業（釣車漬ぎ漁業）による渇りの影響とみられる。
(4) 漁獲漁業係数は9月から翌年1月に大きく、5、6月に小さい。
(5) 照度の水深分布からみると瀬戸の北部はその他の部分と比較して照度は小さい。
(6) 測定は12月、翌年1月に大きく、4～6月に小さい。また海域分布は複雑であるが、瀬戸の中央部に小さく、その周辺部に大きい。

(7) Plankton 沈積量は7月に極大を示し、瀬戸の東部に大きい。
(8) ヤムシ類の出現数は7～8月に極大に達する。またヤムシ類の大部分は、S. naikaiensis で、年間分布は瀬戸の東部、北東部に大きい。ヤムシ類は漁業を始めたので、イカナゴ稚仔を競争する関係にあり、イカナゴ観察時にはヤムシ類は少ない傾向がみられる。
(9) 各環境要因の相互関係についてみると次のようである。
A. 透明度は懸濁質係数および浄度との関係を示す。
B. 塩素量、透明度、Plankton 沈積量の地点別変動から各定点間の相関係数を求めて、偏南海域水温の流動を推定すると偏南海域は東西向潮流の混合海域であることを示し、その模様は年により幾分異なる。
(10) 底質は底質全長が100mesh の網目を通過する細菌が大部分を占め、島の周辺部は岩塊または、れきであった。このことはペネトメーター測定結果とも一致するが、ペネトメーター測定値は周辺海域と同様、瀬戸の中央部に大きく、瀬戸の東西両側に小さい傾向を示す。
(11) イカナゴ稚仔発生量と環境との関係を、塩素量と水温とについて検討すると、イカナゴ稚仔の至適発生条件は、水温7.0～13.0°C、塩素量17.9～18.8%を示した。

5. 気象条件と漁況について検討すると次のことがわかる。
(1) ピカナゴ稚仔の分散は、風向、風力に強く影響される。
(2) 降雨量と水位量は密接な相関を示し、偏南は内湾の性格が強い海域である。

文 献

古川 厚・1955：瀬戸内海底質の硬軟について I 深海新型 Penetrometer. 日海誌, 20, 1071—1075.
古川 厚・1956：水中懸濁物についての論説（その1）測定法の概念. 内海外水産研究所増殖課.
野上 和彦・久岡 久・1959：三重県下主要真珠養殖場予備調査結果について. 本誌, (12), 227—273.
野上 和彦・久岡 久・小笠原義光・岡本 哲・小林 歩男・1961：海中懸濁物質とその生産性等に主としてその点から見た貝類養殖場の特性に関する研究. 本誌, (14), 1—151.

—333—

花岡滋・村上彰男・1954：内湾における水中度. 本誌, (6), 7—14．

浜田尚雄・1965: マントヤムシ Sagitta crassa Tokioka とイカノゴ親魚および稚魚の食餌関係（予報）. 兵庫水試報告別冊, (3).

広島県水文気象連絡協議会, 1959—1964：水文気象．

井上明・1949: イカノゴ (Ammodites personatus Girard) の生態について（第1報）. 日水誌, 15, 458—468.

■1952: イカノゴ (Ammodites personatus Girard) の生態について（第2報）. 本誌, (2), 12—20．

石垣富夫・1956: 北海道周辺のイカノゴ漁業（その1）. 北水試月報, 13, 394—407．

井伊明・甥・報告・1956: イカノゴ調査. 兵庫水試事業報告, 17—22．

JORDAN, D. S. 1901: Japanese Fishes. 2.

■1925: Fishes. 731 (APPLETON).

川村輝良・1940: Ammodites personatus (Girard) の脊椎骨数における地方的差異. 水学誌, 46, 80—83.

橘高二郎・外山公望・1957: 淡路島周辺のイカノゴの年令. 成熟および脊椎骨数について. 神大教育学部研究集録, 15, 71—78.

久保川幸男・吉原裕吉・1957: 水産資源学．

宮崎千博・1960: 沿岸近海漁業．

■1950: 北海道沿岸に来遊するイカノゴ幼魚の生態調査. 第2報. 食性. 北海道水
試研究報告, 7, 56—67.
松原喜代松・1955：魚類の形態と検索. 718—721.
村上 彰男・1958：内海における浮遊性毛頭類の出現 (1)東京湾および瀬戸内海中西部海域における出現状況. 本誌, (11), 357—384.
______・1959：瀬戸内海産浮遊性毛頭類に関する海洋生物学的研究. 本誌, (13), 1—186.
宮村 光武・杉野 倫郎・1959：伊勢湾産イカナゴについて. 三重県水試伊勢湾分場研究報告, 1, 1—9.
農林省農林経済局統計調査部・1954—1964：漁業養殖業漁獲統計表.
______・1954—1963：水産統計月報.
農林省統計調査事務所・1953—1963：広島県海面漁業漁獲統計表.
ニコルスキー・1964訳：魚類生態学.
佐賀県水産試験場・1948—1950：イカナゴの生態調査.
末広 恭雄・1951：魚類学.
水産庁漁業調査第1課・1953：イカナゴ捕獲受納が他漁業に対する影響. 地方許可漁業査察利用調査. No. 2.
瀬戸内海漁業調査事務局・1951：瀬戸内海の漁業. 4, 2, 1—28.
千田 哲資・1964：西日本海域における魚類. 難魚の分布の研究. 岡山水試昭和39年度臨時報告.
______・1965：イカナゴ卵の浮遊性と瀬戸内海における分布. 日水誌, 31, 511—516.
田中 茂雄・1932：魚類学.
______・1941：実用魚介言語図説.
内橋 潔・1950：明石近海におけるイカナゴとその漁業について. 兵庫水試報告, 6, 1—19.
______・井上喜平治・中村美智子・1950：日本産イカナゴ（Ammodites personatus Girard）の脊椎骨数の変異. 兵庫水試報告, 6, 29—31.

－335－
<table>
<thead>
<tr>
<th>Date</th>
<th>Elapsed time (hr)</th>
<th>W. T. (°C)</th>
<th>Average egg diameter</th>
<th>Range of egg diameter</th>
<th>Specific gravity (at 15° C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar. 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-0.4</td>
<td>4.241</td>
<td>4.254</td>
<td>4.230</td>
<td>4.299</td>
</tr>
<tr>
<td>6</td>
<td>-0.1</td>
<td>4.191</td>
<td>4.198</td>
<td>4.222</td>
<td>4.285</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>4.226</td>
<td>4.276</td>
<td>4.251</td>
<td>4.297</td>
</tr>
<tr>
<td>24</td>
<td>-0.5</td>
<td>4.311</td>
<td>4.333</td>
<td>4.294</td>
<td>4.339</td>
</tr>
<tr>
<td>30</td>
<td>-0.2</td>
<td>4.283</td>
<td>4.295</td>
<td>4.310</td>
<td>4.326</td>
</tr>
<tr>
<td>Mar. 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>4.289</td>
<td>4.335</td>
<td>4.368</td>
<td>4.391</td>
</tr>
<tr>
<td>3</td>
<td>-0.4</td>
<td>4.289</td>
<td>4.304</td>
<td>4.338</td>
<td>4.363</td>
</tr>
<tr>
<td>6</td>
<td>-0.5</td>
<td>4.305</td>
<td>4.300</td>
<td>4.316</td>
<td>4.423</td>
</tr>
<tr>
<td>10</td>
<td>-0.9</td>
<td>4.273</td>
<td>4.324</td>
<td>4.349</td>
<td>4.409</td>
</tr>
<tr>
<td>24</td>
<td>-0.3</td>
<td>4.244</td>
<td>4.301</td>
<td>4.312</td>
<td>4.395</td>
</tr>
<tr>
<td>30</td>
<td>-0.7</td>
<td>4.303</td>
<td>4.337</td>
<td>4.293</td>
<td>4.401</td>
</tr>
<tr>
<td>Mar. 22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>24.00</td>
<td>4.851</td>
<td>4.591</td>
<td>4.817</td>
<td>4.967</td>
</tr>
<tr>
<td>3</td>
<td>24.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4.672</td>
<td>4.535</td>
<td>4.718</td>
<td>4.795</td>
<td>5.052</td>
</tr>
<tr>
<td>10</td>
<td>4.690</td>
<td>4.616</td>
<td>4.754</td>
<td>4.891</td>
<td>4.991</td>
</tr>
<tr>
<td>30</td>
<td>4.718</td>
<td>4.630</td>
<td>4.773</td>
<td>4.857</td>
<td>5.067</td>
</tr>
<tr>
<td>Mar. 23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>23.00</td>
<td>4.286</td>
<td>4.289</td>
<td>4.255</td>
<td>4.407</td>
</tr>
<tr>
<td>3</td>
<td>23.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar. 29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.277</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4.221</td>
<td>4.225</td>
<td>4.182</td>
<td>4.126</td>
<td>4.068</td>
</tr>
</tbody>
</table>