Distribution of Heterotrophic Microflagellates in Suō-Nada, Western Seto Inland Sea, in May 1983.

Ichiro IMAI and Katsuhiro ITŌH

Ditribution of heterotrophic microflagellates (HMF, <10μm) and bacteria were investigated in Suō-Nada, western Seto Inland Sea, in May 1983. Measurements of number of cells and size were made using epifluorescence microscopy with the DAPI-FITC double stained samples. HMF can easily be distinguished from autotrophic nanoplanckton by this method.

The majority of HMF cells (59%) was smaller than 4μm in diameter, with the mean cell volume of 57μm³.

The number of HMF ranged from 0.5 to 3.5×10⁴ cells·ml⁻¹. They occurred in higher concentrations in the bottom layer of inshore areas. The proportion of HMF to the total nanoplanckton in number increased below 20-30m in the offshore areas, although the number was not so abundant there. The greater part of HMF (average 85%) appeared to be free-living.

The number of bacteria ranged from 0.4 to 2.2×10⁴ cells·ml⁻¹, and the amount of carbon from 3.2 to 17.4mgC·m⁻³. A correlation (r=0.57, P<0.001) was obtained between the number of bacteria and HMF. The mean number of bacteria was three orders of magnitude larger than HMF. The carbon amounts of HMF were found in the range between 1.9 and 13.9 mgC·m⁻³. Thus, the carbon of HMF occupied about 50% of bacterial carbon, which indicate the quantitative importance of them as a constituent of plankton population.

また，細菌と共に，食物連鎖モデルの中にこの生物群を明確に位置付けする努力も払われてきている（WILLIAMS 1981, AZAM et al. 1983）。

しかし，HMFを定量的に把握した研究は少ない。これはHMFの大きさが植物性ナノプランクトン（Autotrophic nanoplanckton: ANP）に近く，分類学的にも同じ階間に属する場合が
今井・伊藤

多いことから、両者の識別が非常に困難であったためである。

近年落射蛍光顕微鏡を用い、光合成色素の有無を両者の識別の基準にして、HMFをかなり正確に計数できるようになった（Sherr and Sherr 1983a, Caron 1983）。そこで、本研究においてはこのHMFの計数法（Sherr and Sherr 1983a）に改良を加えて計数精度を高め、瀬戸内海西部に位置する周防灘においてHMFの細胞数と粒子径分布を測定した。同時に、海洋細菌の全細胞数および炭素量を測定し、HMFと細菌の量的関係について検討した。なお本報においてHMFとANPは共に10μm以下の大きさのものを対象としている。

本研究は科学技术庁科学技術振興調整費による「海洋生物資源の生産能力と海洋環境に関する研究」の一部として実施したものである。

本稿を草にするにあたり、厳しくなる御指導と御助言を賜わった京都大学農学部水産学科石田祐三郎教授、ならびに西海区水産研究所赤潮部長兼正煕博士に心から感謝の意を表す。また、採水などの海上作業において御協力いただいた西海区水産研究所調査船からしるふじ丸の乗員各位に深謝する。

材料および方法

1. 採水と採水地点

1983年5月14日と15日に、Fig. 1に示した周防灘の調査地点において、バンドーン採水器を用いて0m、5mと10m以深は10m間隔の各層、および海底より1m上層のB–1mから採水を行なった。採水試料は100mlボリ容器（HMF用）とねじ口試験管（海洋細菌用）に分取し、両共グレルテールアルデヒドで固定（最終濃度0.5％）した後、暗所に冷蔵保存した。

2. HMFの細胞数と粒子径

HMFとANPは、Fluorescein isothiocyanate（FITC）による細胞質蛋白の染色（Sherr and Sherr 1983a）とDNAに特異的に結合する4′,6-diamidino-2-phenylindole（DAPI）（Porter and Feig 1980）による核染色の二重染色を施し、落射蛍光顕微鏡（オリオンクラスBH2-RFL，×10）対物レンズ使用）を用いて観察計数を行なった。この二重染色法は、Sherr and Sherr（1983b）によってごく最近発表されたものと原理的には同じであるが、FITCとDAPIの使用濃度および染色処理操作が相違している。

各試料を共収試験管あるいは共収三角フラスコに10–50mlとり、DAPIを最終濃度0.1μg·ml⁻¹、およびFITCを2–4μg·ml⁻¹になるように各々加えた。5分間以上染色した後、Sudan black Bで染めた孔径1.0μmのNucleporeフィルター（Zimmermann et al. 1978）上に染色試料をろ過捕集し、除菌海水で洗浄を行ない、フィルターを乾燥させないでスライドグラスに置いてただちにカバーグラスと共に紫外線マイクロページオイルで封入して計数用標本を作成した。落射蛍光顕微鏡を用いて、青色励起光と紫外線励起光を使い分け、接眼格子（10×10）内あるいは全視野内に見えるHMFを25視野以上、合計50細胞以上計数し、同時にANPを計数することによって、試料中のそれぞれの細胞数（cells·ml⁻¹）を求めた。ただし、ANPのうち単細胞性の微小
ため、周囲の栄養性の微小鞭毛虫類は除外した。細胞数と粒子径の測定は試料採取後約4週間以内に行った。

染色に用いた DAPI 溶液は、5.0 μg·ml⁻¹ の濃度で蒸留水に溶解し、0.22 μm メッシュの Millipore フィルターでろ過した後グルタールアルデヒドを少量（最終濃度0.5％）加えて冷蔵保存したものである。FITC 溶液は、Na-carbonate buffer (0.05M, pH=9.4) に 200 μg·ml⁻¹ の濃度で溶解させ、DAPI と同様に処理したものである。

HMF の粒子径の測定には、Sts. 3, 6, 10, 11, 15 と 17 の表層（0 m）、中層（5 m あるいは10 m）および底層（B-1 m）の試料を用い、各試料につき48-63細胞の粒子径を接眼ミクロメーターで測定した。球状に見える細胞についてはその直径を、その他の形状のものは長径と短径を測定し、各々球形および回転楕円体として体積を計算した。HMF の1細胞あたりの炭素含量は、各試料における平均体積から得た全体の平均体積に炭素量変換係数0.07gC·cm⁻³ (Sorokin 1979) を乗じて求めた。これに HMF 数を乗じて炭素量 (mgC·m⁻³) を算出した。

3. 海洋細菌の細胞数と炭素量

DAPI で蛍光染色した試料を、Sudan black B で染めた0.2 μm 孔径の Nuclepore フィルター上にろ過捕集し、常法（今井1984）によって落射蛍光顕微鏡を用いて細菌数 (cells·ml⁻¹) を求めた。

Fig. 1. Location of sampling stations in Suo-Nada, western Seto Inland Sea. East-West and North-South sections are shown by solid lines.
結果

1. HMF の細胞数と炭素量

(i) HMF の観察 DAPI-FITC 二重染色による HMF の蛍光顕微鏡写真の例を Plate I に示した。(A) は、青色励起光を用いて撮影したもので、ANP はクロロフィルの一次蛍光によって細胞内の葉緑体が赤一橙色に輝くのに対し、HMF は FITC によって細胞全体が緑色に見えるので、両者は容易に区別できる。(B) と同じ励起光を用いたもので、Choanoflagellate が中央に見える。同じ視野のものを紫外線励起光で撮影したものが(C) である。核は DAPI によって青色の蛍光を発し、核を持たない非生物粒子との区別が容易である。また、Choanoflagellate の細胞内には、細菌とほぼ同じ大きさの青色の粒子が多数みとめられた。他にも、HMF の食胞と思われる細胞内の袋の中に、小さな青色粒子が詰まっているのがしばしば観察された。また、無色の Cryptophyceae の細胞内に単細胞性の微小な藍藻が時折みとめられた。

(ii) HMF の粒子径 総計979細胞の HMF の粒子径分布を Fig. 2 に示した。球形換算の直径で 2 - 3 µm の粒子径画分のものが全体の 33% と最も多く存在し、4 µm 以下の比較的小形のもので 59% を占めた。3 µm 以上の画分では粒子径が大きくなるにつれて数が減少した。なお、データとして示さなかったが、10 µm 以上の HMF は光合成色素を持たない Dinoflagellates が
きわめてまれに見られる程度であった。一方、全体の体積に対して占める各粒子径画分の割合は細胞数の場合と異なり、4 μm までの画分では粒子径が大きくなるにつれて高くなるものの、合計しても全体の15%を占めるに過ぎなかった。4 μm 以上では各画分とも10 ～20%であり、比較的一定した割合を占めた。

各層試料の HMF の平均体積は23.6

Table 1. Number and carbon of heterotrophic microflagellates (HMF) and bacteria in Suo-Nada, western Seto Inland Sea, in May 1983.

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>Max.</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMF No. (×10⁴ml⁻¹)</td>
<td>0.5</td>
<td>3.5</td>
<td>1.4</td>
</tr>
<tr>
<td>Carbon (mg·m⁻³)</td>
<td>1.9</td>
<td>13.9</td>
<td>5.5</td>
</tr>
<tr>
<td>Bacteria No. (×10⁴ml⁻¹)</td>
<td>0.4</td>
<td>2.2</td>
<td>1.4</td>
</tr>
<tr>
<td>Carbon (mg·m⁻³)</td>
<td>3.2</td>
<td>17.4</td>
<td>11.2</td>
</tr>
</tbody>
</table>

Fig. 3. Distribution of heterotrophic microflagellates in number and carbon along the East-West and North-South sections.
Fig. 4. Distribution of total nanoplanckton (heterotrophic microflagellates + autotrophic nanoplanckton) in number along the East-West and North-South sections.

Fig. 5. Vertical profiles of heterotrophic microflagellates (open circle) and total nanoplanckton (closed circle) in number at Sts. 3, 10 and 17 in Suō-Nada, western Seto Inland Sea.
周防灘の従属栄養性数小鞭毛虫類

μm³ (St. 11, 0 m) - 102.5 μm³ (St. 10, 1 m) の範囲の値を示し、全体の平均値は 57.0 μm³ (球形換算の直径で 4.8 μm) であった。

図 HMF の細胞数と炭素量 HMF の細胞数と炭素量の値の範囲はそれぞれ、0.5 - 3.5 x 10^3 cells/ml と 1.9 - 13.9 mgC·m⁻³ であった（Table 1）。瀬の東西・南北両断面における HMF の細胞数と炭素量の鉛直分布を Fig. 3 に示した。東西断面においては、東部 (St. 3) の20 m 以深と中央部 (Sts. 10 と 15) で少なく、瀬東部 (Sts. 3 と 6) の表一中層と西部沿岸域の St. 17 で多くかった。南北断面では、全般的に表層と中央部で少なく、南部および北部沿岸域の底層に多く分布した。とくに St. 12 の底層では、3.5 x 10^3 cells/ml と際立って高密度に分布していた。

HMF と全ナノプランクトンの細胞数 HMF と ANP 含せた全ナノプランクトン (Total

Fig. 6. Distribution of bacterial cell number and the amount of carbon along the East-West and North-South sections.
nanoplankton: TNP) は、澄みわたった水体で 1.1-9.5 × 10^4 cells·ml⁻¹ の範囲で分布した。東西および南北の両断面における鉛直分布は、HMF と類似した様相を示した (Fig. 4)。東西断面では西部沿岸域と東部の表層に多く、中央部 (Sts. 10, 15) と東部 (St. 3) の深層層に少なかった。南北断面においては、北部に多く、また北部および南部沿岸域の底層に多く観出されたが、中央と南部表層で少なかった。

次に、東部の St. 3、中央部の St. 10および西部沿岸域の St. 17 における HMF と TNP の細胞数の鉛直分布を Fig. 5 に示した。水深の大きい St. 3 では、深くなるに従い TNP と HMF は共に減少した。しかし、HMF の TNP に占める割合 (H/T) は、0-20m で 28-31%, 30m-1m では 35-48% と、底層になるほど HMF の割合が高くなった。それに対し、Sts. 10 および 17 では、St. 3 のような傾向をもった特徴は観出せなかった。全試料を平均した H/T は約 32% である。

2. 海洋細菌と HMF の分布

(i) 海洋細菌数と炭素量 Sts. 3, 10, 11および 17の試料から画像解析によって求めた細菌の平均体積は 0.089 μm³ であった。細菌数および炭素量は、各々 0.4-2.2 × 10^4 cells·ml⁻¹, 3.2-17.4 mgC·m⁻³の範囲にあった (Table 1)。東西および南北の両断面における細菌数と炭素量の鉛直分布を Fig. 6 に示した。東西断面においては西部沿岸域に多く、東部沖合の St. 3 の深層層で少なかった。南北断面においては中央部の表層と底層に少なく、南部沿岸域の底層に多く分布した。

(ii) HMF と海洋細菌の炭素量と細胞数 HMF と細菌の炭素量における鉛直分布を、Sts. 3, 10および 17を例にして Fig. 7 に示した。St. 3 においては、細菌と HMF いずれも深度と共に

Fig. 7. Vertical profiles of heterotrophic microflagellates (open circle) and bacteria (closed circle) in carbon at Sts. 3, 10 and 17 in Suō-Nada, western Seto Inland Sea.
減少した。Sts. 10と17についてはこのような特徴はみとめられず、鉛直的な分布の変化は大きくなかった。炭素量で表わした海洋細菌に対する HMF の割合は、全試料で 23—102% の範囲で、平均は約 50% であった。

\[y = 0.77x + 0.30 \]
\[n = 75 \]
\[r = 0.57 \quad (P < 0.001) \]

Fig. 8. Relationship between the number of bacteria and heterotrophic microflagellates in Suō-Nada, western Seto Inland Sea, in May 1983.
各定点の全試料について測定した細菌数と HMF 数の関係および両者の間に回帰直線を当てはめた結果 \(y = 0.77x + 0.30 \) (\(y \): HMF 数 (\(\times 10^3 \) cells・ml\(^{-1} \)), \(x \): 細菌数 (\(\times 10^6 \) cells・ml\(^{-1} \))) を Fig. 8 に示した。相関係数 \(r \) は 0.57 (\(P < 0.001 \)) で、両者の間の相関はかなり高いことがわかる。また、全域における細菌の平均細菌数は \(1.4 \times 10^3 \) cells・ml\(^{-1} \) であり、それに対して HMF は \(1.4 \times 10^9 \) cells・ml\(^{-1} \) の値を示し、前者は後者の約 \(10^5 \) 倍であった。

考察

DAPI-FITC 二重染色と落射蛍光顕微鏡による HMF の観察数値方法の特徴は、①FITC によって HMF の細胞全体が緑色で発光し形態を確認できる、②ANP は葉緑体が赤い橙色に見えるため HMF との区別は容易である、③DAPI によって HMF の核や細胞がよく見えるので形状の似た非生物粒子との区別が容易である、④デンタルは特に紫外線励起下ではバックグラウンドが少なく、発光に見える核を探すことによって HMF の検出が簡単できる、等である。CARON (1983) によると、FITC を用いて用いた場合、葉緑体の発する一次発光がFITC による観察に干渉して ANP を過度評価してしまうことがあり、逆に低密度で用いた場合は、HMF の染色が弱まって HMF の過少評価が起きることが指摘されている。また、FITC がある種のデンタルを著しく染色してしまうので、デンタル上あるいはその周辺に位置する HMF の検出が困難であるとも指摘されている。しかし、著者らの用いた方法は、使用した FITC 濃度が SHERR and SHERR (1983a) の約 0.4 mg・ml\(^{-1} \) よりも低いうえに、DAPI によって核も染めているので、染色の過不足に原因する HMF や ANP の過少評価の問題はほとんど克服できたと考えられる。また、FITC による、ある種のデンタルの染色の問題も④の利点によって克服されている。さらに、Plate I (C) に示したように、DAPI によって HMF の細胞内に取り込まれた細菌を検出できる可能性も示唆された。

周防灘における HMF の細胞数および炭素量はそれぞれ、0.5 3.5 \(\times 10^3 \) (平均 \(1.4 \times 10^3 \) cells・ml\(^{-1} \)) と 1.9 13.9 (平均 5.5 mgC・m\(^{-2} \)) で、沿岸域において高く、対中央部や東部の中層以深で低かった。HMF 細胞数に関しては、米国ジョージア州の河口域の最大 \(4.0 \times 10^5 \) cells・ml\(^{-1} \) から沖合水深での最小 \(0.3 \times 10^5 \) cells・ml\(^{-1} \) (SHERR and SHERR 1983a) の値や、デンマークのフィヨルドにおける夏季の \(0.2 \times 10^5 \) 以下 \(3.0 \times 10^5 \) (平均 \(1.0 \times 10^5 \) cells・ml\(^{-1} \) (FENCHEL 1982c) の値、また炭素量に関しては米国ジョージア州沖合での最小値 0.6から沿岸の最大値 9.5 mgC・m\(^{-2} \) (SHERR et al. 1984) や、ベール沿岸の富栄養化水水の50.4 mgC・m\(^{-2} \) や北赤道海流の質栄養水域での最小値 0.35 mgC・m\(^{-2} \) (Sorokin 1979) ）等の値が報じられており、著者らの報告も含めて、富栄養化の程度に応じて HMF の細胞数と炭素量が増加することが明らかである。

全ナノプランクトン (TNP) に対して占める HMF の割合 (H/T) は、鉛直的には全般に euphotic zone 以深の層に高くなる傾向があり、これは POMEROY and JOHANES (1968) の観察にも同様にみられている。一方、水平的には SHERR and SHERR (1983a) のように、H/T が河口域で8.5％と低く沖合域では39％と高くなるような傾向は、著者らの周防灘における測定結果
周防灘の微細有機物懸浮体について、細菌の増殖数に及ぼす影響を調査した。水中の有機物懸浮体（Macroaggregates）は、細菌やHMF、纖毛虫等が多く存在すると言われている（Caron et al. 1982）。Fenchel (1982c) は、海水を20 μmのフィルターでろ過した場合とろ過しない場合のHMF数を比較し、前者で3.6×10^3 cells·mL⁻¹、後者で8.5×10^3 cells·mL⁻¹の結果を得て、HMFの大部分が濁粒子に関係していると述べている。しかしながら、周防灘のSts. 3, 10, 11および17の4定点の試水16試料において、目合い20 μmのナイロン網を用いて自然落下でろ過した海水中のHMF数の、未処理海水中のHMF数に対する比率をみると、59.8~129.6%（平均84.5%）と高く、これらの値はFenchel (1982c)の結果と著しく異なった。その原因は明確ではない。ただ細菌の場合は、懸濁粒子濃度の高い水域で粒子付着細菌数の割合が高くなるという報告（Gouldier 1977）と考え合わせると、Fenchel (1982c)の用いた海水試料は深いフィヨルドから得たものであり、懸濁粒子濃度が周防灘の場合より高かったのかもしれない。

次に、周防灘の全試料における細菌数とHMF数の相関関係はr = 0.57（P < 0.001）であり、Sherr et al. (1984)の場合（r = 0.83）ほどは強くなくなかったが、周防灘全域における細菌の平均細胞数に対するHMF細胞数の割合は約10⁻³倍であり、Fenchel (1982c)やSherr et al. (1984)の結果と類似した割合であった。炭素量でHMFと細菌の関係をみると、ほぼ1:2であり、植物プランクトンに対する細菌の炭素量の割合が約20%であることが（今井1984）と考えて、HMFは海洋プランクトンの中で細菌と並んで重要な役割を占める生物群であり、Fenchel (1982a, b, c)やAzam et al. (1983)の言うように、食物連鎖の中で細菌と動物プランクトンを結ぶ仲介者として重要な役割を演じているものと推察される。今後、細菌の生産速度やHMFによる細菌補食速度の測定を通じて、両者の関係をさらに詳細に研究することが必要であろう。

摘要

1983年5月に周防灘から採水試料を得て、従属栄養性微小鞭毛虫類（HMF, 10 μm以下）および海洋細菌の分布を調べ、下記の知見を得た。

1. DAPI-FITC二重染色と蛍光顕微鏡を用いる方法によって、HMFと植物性ナノプランクトンの識別が容易になり、HMFの正確な観察・計数が可能になった。

2. HMFは、球形換算の直径で4 μm以下のものが全数の59%と大部分を占めたが、体積では4 μm以上のものが全体の80%以上を占めた。平均体積は57.0 μm³（直径4.8 μm）であった。

3. HMFの細胞数は0.5~3.5×10^3 cells·mL⁻¹の範囲にあり、潮海岸域底層部に多く分布し、中央部や東部の中層以深で少なかった。全ナノプランクトンに対するHMFの割合は、平均32.4%であったが、東部の水深の大きい定点では20~30m以深でこの割合が高くなる傾向を示した。

4. 海水の20 μm以下の箇所にHMFの大部分（平均84.5%）が存在した。

5. 海洋細菌の平均体積は0.089 μm³であった。細菌数および炭素量は、0.4~2.2×10^6 cells·
ml⁻¹、3.2－17.4 mgC·m⁻³の範囲で各々分布した。
6. 細菌とHMFの細胞数の間にはかなりの相関（r = 0.57, P < 0.001）がみとめられた。細菌数はHMF数の平均約10³倍であった。
7. HMFの炭素量は1.9－13.9 mgC·m⁻³の範囲で分布し、細菌炭素量の平均50％を占めており、海洋プランクトンの中で量的に相当重要な生物群であることが示唆された。

引 用 文 献

The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser., 10,
257-263.

and bacterivorous protozoa in oceanic macroaggregates. SCIENCE, 218, 795-797.

CARON, D. A., 1983: Technique for enumeration of heterotrophic and phototrophic nanoplankton,
using epifluorescence microscopy, and comparison with other procedures. Appl. Environ.
Microbiol., 46, 491-498.

FENCHEL, T., 1982a: Ecology of heterotrophic microflagellates. I. Some important forms and

FENCHEL, T., 1982b: Ecology of heterotrophic microflagellates. II. Bioenergetics and growth.

FENCHEL, T., 1982c: Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and

FERGUSON, R. L. and P. RUBLEE, 1976: Contribution of bacteria to standing crop of coastal

GOULDER, R., 1977: Attached and free bacteria in estuary with abundant suspended solids.

HAAS, L. W. and K. L. WEBB, 1979: Nutritional mode of several non-pigmented microflagellates

今井一郎, 1984: 周防灘における海洋細菌の粒子径組成と現存量. 南西海区水産研究所報告, (17)
183-196.

POMEROY, L. R. and R. E. JOHANNESS, 1968: Occurrence and respiration of ultraplankton in

PORTER, K. G. and Y. S. FEIG, 1980: The use of DAPI for identifying and counting aquatic

SHERR, B. and E. SHERR, 1983a: Enumeration of heterotrophic microprotozoa by epifluorescence

SHERRE, E. B. and B. F. SHERR, 1983b: Double-staining epifluorescence technique to assess
frequency of dividing cells and bacteriovory in natural populations of heterotrophic micro-

SHERRE, B. F., E. B. SHERR and S. Y. NEWELL, 1984: Abundance and productivity of heterotrophic

Explanation of Plate I.

Plate I. Epifluorescence microphotographs of heterotrophic microflagellates in the samples collected in Suō-Nada. The samples were stained with DAPI and FITC.

(A) A heterotrophic microflagellate and an autotrophic nanoplankton observed under blue light excitation. A heterotrophic microflagellate (green fluorescence) can easily be distinguished from an autotrophic nanoplankton, which has two chloroplasts with orange fluorescence.

(B) Heterotrophic microflagellates observed under blue light excitation. A choanoflagellate cell is indicated by an arrow.

(C) An identical picture to (B) when observed under ultra violet excitation. Nuclei of heterotrophic microflagellates were clearly visible by blue fluorescence. Many blue spots of bacterial size are observed inside the cell of choanoflagellate.